14 resultados para 3D Printing

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This book covers in detail the various aspects of joining materials to form parts. A conceptual overview of rapid prototyping and layered manufacturing is given, beginning with the fundamentals so that readers can get up to speed quickly. Unusual and emerging applications such as micro-scale manufacturing, medical applications, aerospace, and rapid manufacturing are also discussed. This book provides a comprehensive overview of rapid prototyping technologies as well as support technologies such as software systems, vacuum casting, investment casting, plating, infiltration and other systems. This book also: Reflects recent developments and trends and adheres to the ASTM, SI, and other standards Includes chapters on automotive technology, aerospace technology and low-cost AM technologies Provides a broad range of technical questions to ensure comprehensive understanding of the concepts covered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A variety of different approaches have been employed to enableimplantation of electronic medical microdevices. A novel method of producing low-cost, rapidly fabricated implantable enclosures from biocompatible silicone is presented in this paper. This method utilises 3D computer-aided design software to design and model the enclosures prior to fabrication. The enclosures are then fabricated through additive manufacturing from biocompatible silicone using a 3D bioprinter. In this paper, four different implantable enclosure designs are presented. A prototyping stage with three different prototypes is described, these prototype enclosures are then evaluated through submersion and operation tests. A final design is developed in response to the obtained results, and then evaluated in a long term temperature controlled submersion test. The evaluation results are presented and discussed.Several areas of future works are identified and discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Herein we explore modern fabrication techniques for the development of chemiluminescence detection flow-cells with features not attainable using the traditional coiled tubing approach. This includes the first 3D-printed chemiluminescence flow-cells, and a milled flow-cell designed to split the analyte stream into two separate detection zones within the same polymer chip. The flow-cells are compared to conventional detection systems using flow injection analysis (FIA) and high performance liquid chromatography (HPLC), with the fast chemiluminescence reactions of an acidic potassium permanganate reagent with morphine and a series of adrenergic phenolic amines.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A number of methods have been used to make electronic medical microdevices biocompatible. This paper presents a novel approach for design and fabrication of biocompatible silicone enclosures for implantable medical microdevices. The approach involves design and formation of a 3D model of the enclosure using a computer-aided design software tool, followed by 3D printing of the enclosures using a bioplotter. Three different implantable enclosure designs are presented. The fabrication of the three enclosures is given. An evaluation of the suitability of the enclosures for implantation of a deep brain stimulation microdevice is discussed through submersion and operation tests. The evaluation results are presented and discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As a renewable and non-polluting energy source, wind is used to produce electricity via large-diameter horizontal or vertical axis wind turbines. Such large wind turbines have been well designed and widely applied in industry. However, little attention has been paid to the design and development of miniature wind energy harvesters, which have great potential to be applied to the HVAC (heating, ventilating and air conditions) ventilation exhaust systems and household personal properties. In this work, 10 air-driven electromagnetic energy harvesters are fabricated using 3D printing technology. Parametric measurements are then conducted to study the effects of (1) the blade number, (2) its geometric size, (3) aspect ratio, presence or absence of (4) solid central shaft, (5) end plates, and (6) blade orientation. The maximum electrical power is 0.305 W. To demonstrate its practical application, the electricity generated is used to power 4 LED (light-emitting diode) lights. The maximum overall efficiency ηmax is approximately 6.59%. The cut-in and minimum operating Reynolds numbers are measured. The present study reveals that the 3D printed miniature energy harvesters provide a more efficient platform for harnessing ‘wind power’.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Developing soft actuators and sensors by means of 3D printing has become an exciting research area. Compared to conventional methods, 3D printing enables rapid prototyping, custom design, and single-step fabrication of actuators and sensors that have complex structure and high resolution. While 3D printed sensors have been widely reviewed in the literature, 3D printed actuators, on the other hand, have not been adequately reviewed thus far. This paper presents a comprehensive review of the existing 3D printed actuators. First, the common processes used in 3D printing of actuators are reviewed. Next, the existing mechanisms used for stimulating the printed actuators are described. In addition, the materials used to print the actuators are compared. Then, the applications of the printed actuators including soft-manipulation of tissues and organs in biomedicine and fragile agricultural products, regenerative design, smart valves, microfluidic systems, electromechanical switches, smart textiles, and minimally invasive surgical instruments are explained. After that, the reviewed 3D printed actuators are discussed in terms of their advantages and disadvantages considering power density, elasticity, strain, stress, operation voltage, weight, size, response time, controllability, and biocompatibility. Finally, the future directions of 3D printed actuators are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Writing operates in an expanding field of intersections between symbol, inflection and further meaning. The materiality of writing, its embodied action, situated context and myriad substantive expressions, requires an interdisciplinary approach best advanced by collaborative teams and fuelled by collective concerns. At a recent design conference, Doha 2013: Hybrid Making, our team of creative arts researchers (Jondi Keane, Patrick West and Valerie Jeremijenko) conducted a workshop based on the idea of reverse engineering the notion of a souvenir, by starting with the sensation rather than the iconic image. The approaches explored by the group focused on the ways in which a sensation, emotion and/or idea attach to an object and how an object offers itself as an attractor for memory and indicate that when experience, sensation and place are emphasized, the materiality of writing comes to the fore. We assert that material writing allows or even requires a fluid movement between conceptual and perceptual modes of creative practice. In this paper we will unpack different methods of material writing: the materiality of the act of writing with substances, site-specific/site-conditioned writing and 3D printing. Through the particularity of each mode of material writing our discussions will examine the points of attachment that we, as symbolizing creatures, produce in order to orient and reconstruct a world on the fly. Material writing constantly brings us back to earth, anchoring us to the expanded processes integral to hybrid-making.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geometry has been a source of inspiration in the design of the manmade world for millennia; it also provides representational means enabling development of a concept into a built object. In the past three decades computing methodologies have provided the designer with unprecedented tools to explore highly complex forms, create digital models and fabricate them. This paper describes a computational methodology for the transition of forms from abstract geometric configurations to physical objects: a parametric design process assists from the initial ideation to the final prototyping with 3D printing technologies. The five regular polyhedra are used as a case study; this paper explores how parametric based procedures develop these geometric shapes into digital models of structures to be fabricated in different sizes and materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geometry is a source of inspiration in the design and making of the manmade world. Computing techniques provide tools to explore complex forms: the research question is how computational tool can be systemised to assist with the translation of geometric concepts into physical objects. The purpose is to describe computational/manufacturing methods for creating digital models and physical objects from regular geometric configurations. The methods are based on parametric design, assisting from ideation to the generation of digital models with material specifications – using the five regular convex polyhedra as a case study. The results are comprised of digital models used for prototyping with 3D printing technologies and hybrid fabrication processes: the products are built geometric shapes ranging from body ornaments to sculptures. These procedures can be extended to generate designs based on irregular geometric shapes. Parametric-based methods are recommended in the digital modeling and fabrication of any geometric form.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study is to detail a virtual and physical prototyping process to overcome a design constraint in the mountain bike industry. Through a series of techniques, 3D scanning, developing detailed CAD models, then through additive manufacturing processes, a solution wasdeveloped. The challenge in the industry is the constant geometrical changes of components; the trend has been that bike cranks are becoming narrower due to biomechanical factors and tyres are becoming wider due to rider preferences and increased grip. This change in geometry results in metal tubes that can no longer be deformed without exceeding the minimum bend radius for the material. As such exceeding the minimum bend radius will induce early performance failure and geometrical (aesthetic) defects. The solution is an additivemanufactured part that can be substituted into the process without disrupting the entire conventional build process of a customised bike build.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Developments and advances in ground and aerial robotics have presented many end user, 'off the shelf' products for use in areas such as search and rescue, recreation, filming, defense forces and sporting. Advances in underwater robotics however have not yet become as established and widespread as their ground and aerial counterparts, though this field is emerging very quickly. Many underwater robotic vessels are built from expensive, complex components and circuitry which are often tethered to a power source and controlled remotely. This greatly limits their effectiveness and potential range. The Goal was to construct two or more simple robotic fish made from 'off the shelf' products, making use of modern technologies such as 3D printing to assist in the design and manufacture process. And further that each fish is capable of swarming with other fish and interacting with objects in water. Two points of note is the calibration of IR sensors for use underwater and the magnetic coupling of the tail foil to the fish body.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional (3D) printers are now commonplace in both primary and secondary schools within Australia. As with most new technologies they present a range of challenges to users in terms of technical problems and support, and how to integrate their use into the curriculum in a meaningful way. This research reports on data from a small number of Victorian primary schools from urban and regional areas. A case study methodology has been used to examine how each setting has approached the use of these printers and includes a review of the literature concerning the uptake of new technologies by non-experts. Data include interview transcripts from teachers, principals and technicians and photographic artefacts of 3D printed objects. Teachers reflected on their reasoning behind lesson plans and their aspirations for future use of 3D printers in the classroom. Some of the issues identified were teacher confidence, time to ‘play’ with and become familiar with 3D printers; and technical challenges that arose such as the time taken to print an object and clogging of printer extruders (heads). Recommendations are made concerning possible ways forward.