11 resultados para 304-U1309B

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 304 austenitic stainless steel was deformed using hot torsion to study the evolution of dynamic recrystallization (DRX). The initial nucleation of dynamically recrystallization occurred by the bulging of pre-existing high angle grain boundaries at a strain much lower than the peak strain. At the
peak stress, only a low fraction of the prior grain boundaries were covered with new DRX grains. Beyond the peak stress, new DRX grains formed layers near the initial DRX and a necklace structure was developed. Several different mechanisms appeared to be operative in the formation of new high angle boundaries and grains. The recrystallization behaviour after deformation showed a classic transition from strain dependent to strain independent softening. This occurred at a strain beyond the
peak, where the fraction of dynamic recrystallization was only 50%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to improve the understanding of the dynamic and post-dynamic recrystallization behaviours of AISI 304 austenitic stainless steel, a series of hot torsion test have been performed under a range of deformation conditions. The mechanical and microstructural features of dynamic recrystallization (DRX) were characterized to compare and contrast them with those of the post-dynamic recrystallization. A necklace type of dynamically recrystallized microstructure was observed during hot deformation at 900 °C and at a strain rate of 0.01 s−1. Following deformation, the dependency of time for 50% recrystallization, t50, changed from “strain dependent” to “strain independent” at a transition strain (ε*), which is significantly beyond the peak. This transition strain was clearly linked to the strain for 50% dynamic recrystallization during deformation. The interrelations between the fraction of dynamically recrystallized microstructure, the evolution of post-dynamically recrystallized microstructure and the final grain size have been established. The results also showed an important role of grain growth on softening of deformed austenite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 2D cellular automation approach was used to simulate microstructure evolution during and after hot deformation. Initial properties of the microstructure and dislocation density were used as input data to the cellular automation model. The flow curve and final grain size were the output data for the dynamic recrystallization simulation, and softening kinetics curves were the output data of static and metadynamic recrystallization simulations. The model proposed in this work considered the effect of thermomechanical parameters (e.g., temperature and strain rate) on the nucleation and growth kinetics during dynamic recrystallization. The dynamic recrystallized microstructures at different strains, temperatures, and strain rates were used as input data for static and metadynamic recrystallization simulations. It was shown that the cellular automation approach can model the final microstructure and flow curve successfully in dynamic recrystallization conditions. The postdeformation simulation results showed that the time for 50% recrystallization decreases with increasing strain for a given initial grain size and that dynamic recrystallization slows the postdeformation recrystallization kinetics compared to a model without dynamic recrystallization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project aimed to model the microstructure evolution during and following hot deformation using a cellular automaton approach. The flow curves, softening kinetics and final microstructures were used as the input data for the post-deformation simulation to elucidate the effect of dynamic recrystallization on the post-deformation softening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This data is the result of an investigation into the effect of grain orientation on the substructure development of 304 stainless steel and a Ni-30wt.%Fe alloy. Both alloys have been used as model alloys to study the high temperature deformation of austenite. The development of the dislocation substructure as a function of strain, temperature and grain orientation was investigated using a combination of electron backscatterd diffraction (EBSD) and transmission electron microscopy (TEM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, wetting characteristics and evolution of microstructure of Sn–3.5Ag solder on Ag/Ni and Ni electroplated 304 stainless steel (304SS) substrates have been investigated. Solder alloy spread on Ag/Ni plated 304SS substrates exhibited better wetting as compared to Ni/304SS substrate. The formations of irregular shaped and coarser IMCs were found at the interface of solder/Ni/304SS substrate region whereas, solder/Ag/Ni/substrate interface showed continuous scallop and needle shaped IMCs. The precipitation of Ag3Sn, Ni–Sn, FeSn2 and lesser percentage of Fe–Cr–Sn IMCs were found at the interface of solder/Ag/Ni/substrate region whereas, solder/Ni/304 SS substrate exhibited predominantly FeSn2 and Fe–Cr–Sn IMCs. Presence of higher amount of Fe–Cr–Sn IMCs at the solder/Ni/304SS substrate interface inhibited the further wetting of solder alloy.