30 resultados para 300302 Plant Growth and Development

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistance to thyroid hormone is an uncommon problem, which has rarely been associated with thyroid dysgenesis. We report a case with both thyroid gland ectopy and resistance to thyroid hormone and, thus, a reduced capacity to produce and respond to thyroid hormone. The patient presented at 2 years of age with developmental delay, dysmorphic features, and elevation in both thyroxine and thyrotropin. We document her response to therapy with thyroxine, with particular regard to her growth and development. Persistent elevation of thyrotropin is commonly recognized during treatment of congenital hypothyroidism. Resistance to thyroid hormone may be an important additional diagnosis to consider in cases where thyrotropin remains persistently elevated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barramundi (Lates calcarifer), a catadromous teleost of significant and growing commercial importance, are reported to have limited fatty acid bioconversion capability and therefore require preformed long-chain PUFA (LC-PUFA) as dietary essential fatty acid (EFA). In this study, the response of juvenile barramundi (47·0 g/fish initial weight) fed isolipidic and isoenergetic diets with 8·2 % added oil was tested. The experimental test diets were either devoid of fish oil (FO), and thus with no n-3 LC-PUFA (FO FREE diet), or with a low inclusion of FO (FO LOW diet). These were compared against a control diet containing only FO (FO CTRL diet) as the added lipid source, over an 8-week period. Interim samples and measurements were taken fortnightly during the trial in order to define the aetiology of the onset and progression of EFA deficiency. After 2 weeks, the fish fed the FO FREE and FO LOW diets had significantly lower live-weights, and after 8 weeks significant differences were detected for all performance parameters. The fish fed the FO FREE diet also had a significantly higher incidence of external abnormalities. The transcription of several genes involved in fatty acid metabolism was affected after 2 weeks of feeding, showing a rapid nutritional regulation. This experiment documents the aetiology of the onset and the progression of EFA deficiency in juvenile barramundi and demonstrates that such deficiencies can be detected within 2 weeks in juvenile fish.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of the interaction of pathogens with plant roots is often complicated by the growth of plants in a soil substrate. A soil-free plant growth system (SPS) was developed that removes the need for a substrate while supporting the growth of seedlings in a nutrient rich, oxygenated environment. The model legume Lupinus angustifolius was used to compare the growth of seedlings within soil and the SPS. Seedlings grown under both conditions were similar in morphology, anatomy and health (measured by leaf chlorophyll abundance) and importantly there was little difference in root growth and development although straighter and fuller root systems were achieved in the SPS. The ease of access to the root system proved efficient for the analysis of root and pathogen interactions with no interference from soil or adhering particulate matter. Following inoculation of L. angustifolius roots with Phytophthora cinnamomi the host/pathogen interaction was easily observed and tissues sampled undamaged.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background
Clinicians and policy makers need the ability to predict quantitatively how childhood bodyweight will respond to obesity interventions.

Methods
We developed and validated a mathematical model of childhood energy balance that accounts for healthy growth and development of obesity, and that makes quantitative predictions about weight-management interventions. The model was calibrated to reference body composition data in healthy children and validated by comparing model predictions with data other than those used to build the model.

Findings
The model accurately simulated the changes in body composition and energy expenditure reported in reference data during healthy growth, and predicted increases in energy intake from ages 5—18 years of roughly 1200 kcal per day in boys and 900 kcal per day in girls. Development of childhood obesity necessitated a substantially greater excess energy intake than for development of adult obesity. Furthermore, excess energy intake in overweight and obese children calculated by the model greatly exceeded the typical energy balance calculated on the basis of growth charts. At the population level, the excess weight of US children in 2003—06 was associated with a mean increase in energy intake of roughly 200 kcal per day per child compared with similar children in 1971—74. The model also suggests that therapeutic windows when children can outgrow obesity without losing weight might exist, especially during periods of high growth potential in boys who are not severely obese.

Interpretation
This model quantifies the energy excess underlying obesity and calculates the necessary intervention magnitude to achieve bodyweight change in children. Policy makers and clinicians now have a quantitative technique for understanding the childhood obesity epidemic and planning interventions to control it.

Funding
Intramural Research Program of the National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application of mesoporous silica nanoparticles (MSNs) as a smart delivery system to agricultural crops is gaining attention but the release of nanoparticles into the environment may pose a potential threat to biological systems. We investigated the effects of MSNs on the growth and development of wheat and lupin plants grown under controlled conditions. We report a dramatic increase in the growth of wheat and lupin plants exposed to MSNs. We also found that, in leaves, MSNs localised to chloroplasts and that photosynthetic activity was significantly increased. In addition, absorption and cellular distribution of MSNs by the two plant species following root uptake were observed using scanning electron microscopy equipped with energy dispersive spectroscopy (SEM-EDS). Following uptake of MSNs at 500 and 1000 mg L(-1), there was enhancement of seed germination, increased plant biomass, total protein and chlorophyll content. Treatment of both species with MSNs at the highest concentration (2000 mg L(-1)) did not result in oxidative stress or cell membrane damage. These findings show that MSNs can be used as novel delivery systems in plants and that over the range of concentrations tested, MSNs do not have any negative impacts on plant growth or development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimal plant growth is the result of the interaction of a complex network of plant hormones and environmental signals. Ascorbic acid (AsA) is a crucial antioxidant in plants and is involved in the regulation of cell division, cell expansion, photosynthesis and hormone biosynthesis. Quantitative analysis of AsA in Arabidopsis thaliana organs was conducted using HPLC with d -isoascorbic acid (Iso-AsA) as an internal standard. Analysis revealed Àuctuations in the levels of AsA in different organs and growth phases when plants were grown under standard conditions. AsA concentrations increased in leaves in direct proportion to leaf size and age. Young siliques (seed set stage) and Àowering buds (open and unopened) showed the highest levels of AsA. A relationship was found between the level of AsA and indole acetic acid (IAA) in leaves, stems, Àowers, and siliques and the highest level of IAA and AsAwere found in the Àowers. In contrast, the lowest level of the plant hormone, salicylic acid, was found in the Àowers and the highest quantity measured in the leaves. Consequently, AsA has been found to be a multifunctional molecule that is involved as a key regulator of plant growth and development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of milk in providing nutrition for the young is well established. However, it is becoming apparent that milk has a more comprehensive role in programming and regulating growth and development of the suckled young, and an autocrine impact on the mammary gland so that it functions appropriately during the lactation cycle. This central role of milk is best studied in animal models, such as marsupials that have evolved a different lactation strategy to eutherians and allow researchers to more easily identify regulatory mechanisms that are not as readily apparent in eutherian species. For example, the tammar wallaby (Macropus eugenii) has evolved with a unique reproductive strategy of a short gestation, birth of an altricial young and a relatively long lactation during which the mother progressively changes the composition of the major, and many of the minor components of milk. Thus, in contrast to eutherians, there is a far greater investment in development of the young during lactation and it is likely that many of the signals that regulate development of eutherian embryos in utero are delivered by the milk. This requires the co-ordinated development and function of the mammary gland. Inappropriate timing of these signalling events in mammals may result in either limited or abnormal development of the young, and potentially a higher incidence of mature onset disease. The tammar is emerging as an attractive model to better understand the role of milk factors in these processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing economic growth has long been the dominant position within the public policies of all South East Asian countries. More recently, a new issue, sustainability, has emerged within development economic literature, which has significant implications for the continual pursuit of economic growth. Sustainability is concerned with ensuring the current generation meets their present needs without threatening future generations' ability to do likewise. This ability is dependent on a healthy and functioning socio-economic environmental (SEE) system. Economic growth can damage the SEE-system, though, through resource degradation, over-harvesting and pollution. Therefore, achieving economic growth and sustainability simultaneously may not be possible. This paper discusses these tensions between economic growth and sustainability by undertaking a number of SEE-based adjustments to GDP in order to measure sustainability. Thailand is used as a case study for a 25 year period, 1975-1999. The adjustments include the environmental costs caused by economic growth such as noise pollution, water pollution, the depletion of non-renewable resources, and deforestation. The results show a stark difference in terms of GDP per capita and the SEE-adjusted GDP per capita figure. The paper concludes that with increasing environmental costs of economic growth, pursuing high growth objectives without considerations to the environment threatens sustainability

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper goes over some of the recent discussions on the effects on growth and poverty of institutions and policies, especially those that relate to the functioning of the private sector. It examines the empirical relationship between various measures of institutional quality and regulatory policies, and economic growth and poverty. The results suggest that good governance, as measured by a strong commitment to the rule of law, among other things, matters for poverty reduction largely through its effect on economic growth. In terms of business regulations, the paper finds that less restrictive regulations pertaining to starting a business are associated with higher economic growth as well as lower rates of $2-a-day poverty. Political freedom is not associated with either higher growth or lower poverty. Taken together, the evidence here seems to suggest that the delivery of good governance and policies that facilitate the creation of new enterprises are more relevant for growth and poverty reduction than the nature of the political system per se.

Relevância:

100.00% 100.00%

Publicador:

Resumo:



A modified version of the popular agrohydrological model SWAP has been used to evaluate modelling of soil water flow and crop growth at field situations in which water repellency causes preferential flow. The parameter sensitivity in such situations has been studied. Three options to model soil water flow within SWAP are described and compared: uniform flow, the classical mobile-immobile concept, and a recent concept accounting for the dynamics of finger development resulting from unstable infiltration. Data collected from a severely water-repellent affected soil located in Australia were used to compare and evaluate the usefulness of the modelling options for the agricultural management of such soils.

The study shows that an assumption of uniform flow in a water-repellent soil profile leads to an underestimation of groundwater recharge and an overestimation of plant transpiration and crop production. The new concept of modelling taking finger dynamics into account provides greater flexibility and can more accurately model the observed effects of preferential flow compared with the classical mobile–immobile concept. The parameter analysis indicates that the most important factor defining the presence and extremity of preferential flow is the critical soil water content.

Comparison of the modelling results with the Australian field data showed that without the use of a preferential flow module, the effects of the clay amendments to the soil were insufficiently reproduced in the dry matter production results. This means that the physical characteristics of the soil alone are not sufficient to explain the measured increase in production on clay amended soils. However, modelling with the module accounting for finger dynamics indicated that the preferential flow in water repellent soils that had not been treated with clay caused water stress for the crops, which would explain the decrease in production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bio-inoculants have potential role in plant growth promotion. The present study evaluated the potential of Pseudomonas strains as bio-inoculants in wheat on the basis of plant growth promotion and physiological characterization. The 16S rRNA gene sequencing and phylogenetic analysis revealed that four isolated strains belonged to genus Pseudomonas. These strains were positive for phosphorus solubilization and indole acetic acid production, whereas only two strains were positive candidate for their nitrogen fixing ability as determined by presence or absence of nifH gene through amplification from polymerase chain reaction. The pot experiment showed that the integrated use of Pseudomonas strains as co-inoculant and 50% applied mineral fertilizers enhanced the maximum wheat growth and development from 58 to 140% for different shoot and root growth parameters. The strain NCCP-45 and NCCP-237 were closely related to Pseudomonas beteli and Pseudomonas lini, respectively. These isolated strains can be used to increase crop productivity by using as a bio-fertilizer inoculum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As muscles become larger and stronger during growth and in response to increased loading, bones should adapt by adding mass, size, and strength. In this unilateral model, we tested the hypothesis that (1) the relationship between muscle size and bone mass and geometry (nonplaying arm) would not change during different stages of puberty and (2) exercise would not alter the relationship between muscle and bone, that is, additional loading would result in a similar unit increment in both muscle and bone mass, bone size, and bending strength during growth. We studied 47 competitive female tennis players aged 8–17 years. Total, cortical, and medullary cross-sectional areas, muscle area, and the polar second moment of area (Ip) were calculated in the playing and nonplaying arms using magnetic resonance imaging (MRI); BMC was assessed by DXA. Growth effects: In the nonplaying arm in pre-, peri- and post-pubertal players, muscle area was linearly associated BMC, total and cortical area, and Ip (r = 0.56–0.81, P < 0.09 to < 0.001), independent of age. No detectable differences were found between pubertal groups for the slope of the relationship between muscle and bone traits. Post-pubertal players, however, had a higher BMC and cortical area relative to muscle area (i.e., higher intercept) than pre- and peri-pubertal players (P < 0.05 to < 0.01), independent of age; pre- and peri-pubertal players had a greater medullary area relative to muscle area than post-pubertal players (P < 0.05 to < 0.01). Exercise effects: Comparison of the side-to-side differences revealed that muscle and bone traits were 6–13% greater in the playing arm in pre-pubertal players, and did not increase with advancing maturation. In all players, the percent (and absolute) side-to-side differences in muscle area were positively correlated with the percent (and absolute) differences in BMC, total and cortical area, and Ip (r = 0.36–0.40, P < 0.05 to < 0.001). However, the side-to-side differences in muscle area only accounted for 11.8–15.9% of the variance of the differences in bone mass, bone size, and bending strength. This suggests that other factors associated with loading distinct from muscle size itself contributed to the bones adaptive response during growth. Therefore, the unifying hypothesis that larger muscles induced by exercise led to a proportional increase in bone mass, bone size, and bending strength appears to be simplistic and denies the influence of other factors in the development of bone mass and bone shape.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Murray cod, an Australian native freshwater fish, supports a relatively small but increasing aquaculture industry in Australia. Presently, there are no dedicated commercial diets available for Murray cod; instead, nutritionally sub-standard feeds formulated for other species are commonly used. The aim of the present investigation was to assess the suitability of two plant based lipid sources, canola oil (CO) and linseed oil (LO), as alternatives to fish oil for juvenile Murray cod. Five iso-nitrogenous, iso-calorific, iso-lipidic semi-purified experimental diets were formulated with 17% lipid originating from 100% cod liver oil (FO), 100% canola oil, 100% linseed oil and 1 : 1 blends of canola and cod liver oil (CFO) and 1 : 1 blends of linseed and cod liver oil (LFO). Each of the diets was fed to apparent satiation twice daily to triplicate groups of 50 Murray cod with initial mean weights of 6.45 ± 1.59 g for 84 days at 22 °C. Final mean weight, specific growth rate and daily feed consumption were significantly higher for the FO and LFO treatments compared to the LO treatment. Feed conversion and protein efficiency ratios were not significantly different amongst treatments. Experimental diets containing vegetable oil and vegetable oil blend(s) had significantly higher concentrations of n-6 fatty acids, predominantly in the form of linoleic acid (LA), while n-3 fatty acids were present in significantly higher concentrations in LO and LFO treatments. The fatty acid composition of Murray cod fillet was reflective of the dietary lipid source. Fillet of fish fed the FO was highest in EPA (20:5n-3), ArA (20:4n-6) and DHA (22:6n-3). Fish fed the CO diet had high concentrations of oleic acid (OlA) (192.2 ± 10.5 mg g lipid− 1), while the fillet of Murray cod fed the LO diet was high in α-linolenic acid (LnA) (107.1 ± 6.7 mg g lipid− 1). The present study suggests that fish oil can be replaced by up to 100% with canola oil and by up to 50% with linseed oil in Murray cod diets with no significant effect on growth.