12 resultados para 030303 Optical Properties of Materials

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, mechanochemical processing has been used to manufacture a nanoparticulate powder of ZnO with a controlled particle size and minimal hard agglomeration. The suitability of this ZnO powder for use as either a photocatalyst or an optically transparent UV-filter was evaluated by comparing its optical and photocatalytic properties with those of three commercially available powders that were synthesised by chemical precipitation and flame pyrolysis. The ZnO powder synthesised by mechanochemical processing was found to exhibit high optical transparency and low photocatalytic activity per unit of surface area, which indicates that it is suitable for use in optically transparent UV-filters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminum nitride (AƖN) nanostructures have shown novel physical and chemical properties that are essential for technological applications. We report a vapor-solid growth of novel three-dimensional (3D) A1N urchin-like nanostmcture in DC arc plasma via the direct reaction between Al vapor and N2 gas without any catalyst or template. The as-prepared 3D A1N nanostructures which have urchin-like shapes consist of numerous microdaggers with sharp tips and lengths of up to several micrometers and widths of 0.5-2 µm. A growth mechanism of A1N nanostructures with urchin shapes was suggested and explained in detail. The optical properties of the AƖN nanostructures with urchin shapes were also studied with photoluminescence spectrum, which reveals a broad emission, suggesting potential applications in electronic and optoelectronic nanodevices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By integrating together VO2’s unique near-room-temperature (RT) semiconductor–metal (S–M) phase transition with a thin silver (Ag) layer’s plasmonic properties, VO2/Ag multilayers could present a much enhanced optical transmission change when increasing the temperature from RT to over VO2’s S–M phase-transition temperature. Changing VO2 and Ag layer thicknesses can also significantly tune their transmission and absorption properties, which could lead to a few useful designs in optoelectronic and energy-saving industries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin-orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel AlN nanostructures with tunable building units of the architectures have been successfully synthesized without any catalyst or template; the subsequent photoluminescence (PL) indicates that the optical properties of the AlN nanostructures can be adjusted by tuning the architectures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoparticulate TiO2 is of interest for a variety of technological applications, including optically transparent UV-filters and photocatalysts for the destruction of chemical waste. The successful use of nanoparticulate TiO2 in such applications requires an understanding of how the synthesis conditions effect the optical and photocatalytic properties. In this study, we have investigated the effect of heat treatment temperature on the properties of nanoparticulate TiO2 powders that were synthesised by solid-state chemical reaction of anhydrous TiOSO4 with Na2CO3. It was found that the photocatalytic activity increased with the heat treatment temperature up to a maximum at 600 °C and thereafter declined. In contrast, the optical transparency decreased monotonically with the heat treatment temperature. These results indicate that solid-state chemical reaction can be used to prepare powders of nanoparticulate TiO2 with properties that are optimised for use as either optically transparent UV-filters or photocatalysts.