131 resultados para organic ionic plastic crystal (OIPC)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemistry of decamethylferrocene (DmFc) has been studied in organic solvent systems and proven to be a superior internal reference redox standard to ferrocene (Fc). However, the electrochemical information on this redox couple in ionic liquids is still limited. Therefore, the voltammetric and amperometric behaviour of DmFc was investigated under argon and vacuum conditions in six different ionic liquids and compared to that of Fc under the same experimental conditions. Consequently, the concentration, the heterogeneous electron-transfer rate constant (k0), volatility, and diffusion coefficients (D) of Fc and Fc+, as well as the solubility, k 0, and D values for DmFc and DmFc+ were determined under argon and vacuum conditions by fitting the experimental chronoamperometric and voltammetric data with numerical and digital simulations. The rate of mass transport of ferrocene and decamethylferrocene was observed to decreases between 6-37% by changing the working atmosphere from argon to vacuum. The D Fc/DFc+ ratios are in the range 1.31-2.01 in the different ILs. Importantly, the DDmFc/DDmFc+ ratio is ≈ 1 in 1-methyl-3-butylimidazolium bis(trifluoromethylsulfonyl)amide, 1-methyl-1-butylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate, and 1-methyl-3-ethylimidazolium tris(pentafluoroethyl)trifluorophosphate. The experimental mid-point potential and half-wave potential of Fc0/+ vs. DmFc0/+, as well as the formal potential obtained after correction for inequality in the respective diffusion coefficients of both redox processes are presented. Even though DmFc is not freely soluble in the different ILs, the results presented in this work suggest that the DmFc0/+ redox process is less dependent than Fc on the IL nature. This is a very relevant finding for the application of this transition-metal sandwich complex as an internal reference redox system in IL solutions. © 2014 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metal-air batteries are a well-established technology that can offer high energy densities, low cost and environmental responsibility. Despite these favourable characteristics and utilisation of oxygen as the cathode reactant, these devices have been limited to primary applications, due to a number of problems that occur when the cell is recharged, including electrolyte loss and poor efficiency. Overcoming these obstacles is essential to creating a rechargeable metal-air battery that can be utilised for efficiently capturing renewable energy. Despite the first metal-air battery being created over 100 years ago, the emergence of reactive metals such as lithium has reinvigorated interest in this field. However the reactivity of some of these metals has generated a number of different philosophies regarding the electrolyte of the metal-air battery. Whilst much is already known about the anode and cathode processes in aqueous and organic electrolytes, the shortcomings of these electrolytes (i.e. volatility, instability, flammability etc.) have led some of the metal-air battery community to study room temperature ionic liquids (RTILs) as non-volatile, highly stable electrolytes that have the potential to support rechargeable metal-air battery processes. In this perspective, we discuss how some of these initial studies have demonstrated the capabilities of RTILs as metal-air battery electrolytes. We will also show that much of the long-held mechanistic knowledge of the oxygen electrode processes might not be applicable in RTIL based electrolytes, allowing for creative new solutions to the traditional irreversibility of the oxygen reduction reaction. Our understanding of key factors such as the effect of catalyst chemistry and surface structure, proton activity and interfacial reactions is still in its infancy in these novel electrolytes. In this perspective we highlight the key areas that need the attention of electrochemists and battery engineers, in order to progress the understanding of the physical and electrochemical processes in RTILs as electrolytes for the various forms of rechargeable metal-air batteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The remarkable physical properties of ionic liquids (ILs) make them potentially excellent lubricants. One of the challenges for using ILs as lubricants is their high cost. In this article, atomic force microscopy (AFM) nanotribology measurements reveal that a 1 mol % solution of IL dissolved in an oil lubricates the silica surface as effectively as the pure IL. The adsorption isotherm shows that the IL surface excess need only be approximately half of the saturation value to prevent surface contact and effectively lubricate the sliding surfaces. Using ILs in this way makes them viable for large-scale applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Treatment of coloured effluent treatment is a major issue for the textile industry. In this study, catalyst P25-graphene was prepared and applied for degrading dye from an aqueous solution. Three types of dyes were selected to determine the feasibility of the catalyst for the dye degradation, including sulphonic, azoic, and fluorescent dyes. P25-graphene catalyst showed good ability to degrade all selected dyes. The influence of inorganic salts and surfactants on the photocatalytic degradation of rhodamine B using catalyst P25-graphene was also investigated. The degradation of rhodamine B was suppressed by the presence of NaCl, but the effect of Na2SO4 was negligible. The degradation of rhodamine B was significantly suppressed by all three types of surfactant, namely anionic, cationic and non-ionic surfactants. NMR technique was used to investigate the mechanisms associated with this suppression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blends between the widely used thermoset resin, epoxy, and the most abundant organic material, natural cellulose are demonstrated for the first time. The blending modification induced by charge transfer complexes using a room temperature ionic liquid, leads to the formation of thermally flexible thermoset materials. The blend materials containing low concentrations of cellulose were optically transparent which indicates the miscibility at these compositions. We observed the existence of intermolecular hydrogen bonding between epoxy and cellulose in the presence of the ionic liquid, leading to partial miscibility between these two polymers. The addition of cellulose improves the tensile mechanical properties of epoxy. This study reveals the use of ionic liquids as a compatible processing medium to prepare epoxy thermosets modified with natural polymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flexible dye-sensitized solar cells (DSSCs) built on plastic substrates have attracted great interest as they are lightweight and can be roll-to-roll printed to accelerate production and reduce cost. However, plastic substrates such as PEN and PET are permeable to water, oxygen and volatile electrolyte solvents, which is detrimental to the cell stability. Therefore, to address this problem, in this work, an ionic liquid (IL) electrolyte is used to replace the volatile solvent electrolyte. The initial IL-based devices only achieved around 50% of the photovoltaic conversion efficiency of the cells using the solvent electrolyte. Current-voltage and electrochemical impedance spectroscopy (EIS) analysis of the cells in the dark indicated that this lower efficiency mainly originated from (i) a lack of blocking layer to reduce recombination, and (ii) a lower charge collection efficiency. To combat these problems, cells were developed using a 12 nm thick blocking layer, produced by atomic layer deposition, and 1 μm thick P25 TiO2 film sensitized with the hydrophobic MK-2 dye. These flexible DSSCs utilizing an IL electrolyte exhibit significantly improved efficiencies and a <10% drop in performance after 1000 h aging at 60°C under continuous light illumination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Owing to the unique properties of certain Ionic liquids (ILs) as safe and green solvents, as well as the potential of sodium as an alternative to lithium as charge carriers, we investigate gel sodium electrolytes as safe, low cost and high performance materials with sufficient mechanical properties for application in sodium battery technologies. We investigate the effect of formation of two types of gel electrolytes on the properties of IL electrolytes known to support Na/Na+ electrochemistry. The ionic conductivity is only slightly decreased by 0.0005 and 0.0002 S cm-1 in the case of 0.3 and 0.5 M NaNTf2 systems respectively as the physical properties transition from liquid to gel. We observed facile plating and stripping of Na metal around 0 V vs. Na/Na+ through the cyclic voltammetry. A wide-temperature range of the gelled IL state, of more than 100 K around room temperature, is achieved in the case of 0.3 and 0.5 M NaNTf2. We conclude that the formation of a gel does not significantly affect the liquid-like ion dynamics in these materials, as further evidenced by DSC and FTIR analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solvate ionic liquids (SILs) consisting of lithium bis(trifluoromethylsulfonyl)imide dissolved in tri-or tetraglyme have recently emerged as a novel class of ionic liquids. Herein, the first use of solvate ionic liquids as a replacement for molecular solvents in electrocyclization reactions is reported. The SILs promoted both Diels-Alder and [2+2] cycloaddition reactions, compared to an appropriate molecular solvent, and 5 M lithium perchlorate in diethyl ether. The Gutmann acceptor number (AN) of these solvate ionic liquids has also been determined by 31P NMR spectroscopy to be 26.5, thus being modest Lewis acids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The modification of carbon fibre surfaces has been achieved using a novel combination of low power microwave irradiation (20 W) in both an ionic liquid (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) and an organic solvent (1,2-dichlorobenzene). The use of the ionic liquid was superior to the organic solvent in this application, resulting in a higher density of surface grafted material. As a consequence, carbon fibres treated in the ionic liquid displayed improved interfacial adhesion in the composite material (+28% relative to untreated fibres) compared to those treated in organic solvent (+18%). The methodology presented herein can be easily scaled up to industrially relevant quantities and represent a drastic reduction in both reaction time (30 min from 24 h) and energy consumption, compared to previously reported procedures. This work opens the door to potential energy and time saving strategies which can be applied to carbon fibre manufacture for high performance carbon fibre reinforced composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of adding glycerol carbonate (GC) or propylene carbonate (PC) to sodium (Na)-bentonite on the hydraulic performance of geosynthetic clay liners (GCLs) under hypersaline conditions is examined. Fluid loss (FL), swell index (SI) and solution retention capacity (SRC) measurements were carried out to compare the potential hydraulic performance of these two cyclic organic carbonates (COCs) as bentonite modifiers. A modified FL test enabled quantitative measurement of both the water retention characteristics of untreated and COC modified bentonites as well as calculation of hydraulic conductivity values. Tests under aggressively saline conditions (ionic strength, I ≥ 1 M of NaCl and ≥3 M of CaCl2) showed that at a mass ratio of 1:1 (GC to bentonite), the FL of a GC-Na-bentonite was ≈40–104 mL in NaCl and ≈61–91 mL in CaCl2. This was about 10–20 mL and 70–200 mL, respectively, lower than that of a comparable PC-Na-bentonite (1:1 PC to bentonite) and untreated Na-bentonite. Greater swelling (SI) and greater solution retention capacity (SRC) was observed for the GC treated Na-bentonite compared to untreated Na-bentonite in all salt solutions, and for PC-Na-bentonite at high ionic strength of both NaCl and CaCl2 solutions, demonstrating the superior hydraulic barrier performance of COC-bentonites under severely saline conditions. Experiments conducted in flexible-wall permeameters with I = 3 M CaCl2 showed approximately one order of magnitude lower (∼10−11 m/s vs ∼1.9 × 10−10 m/s) hydraulic conductivity of GC treated bentonite cake compared to the k value of the untreated Na-bentonite cake. Calculated hydraulic conductivity from fluid loss tests estimated the measured values in a conservative way (overestimation).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order for sodium batteries to become a safe, lower cost option for large scale energy storage, minimising the price of all components is important. We report here on the application of a pyrrolidinium room temperature ionic liquid comprising the dicyanamide anion as a successful electrolyte system for sodium metal batteries that does not contain expensive fluorinated species. The effects of plating/stripping of sodium from Na metal electrodes has been investigated in a symmetrical Na | electrolyte | Na configuration at a current density of 10 μA cm− 2. Comparisons are drawn to reference organic electrolytes comprising propylene carbonate-fluoroethylene carbonate. Residual water molecules in the ionic liquid electrolyte are observed to have a significant effect upon the surface film and subsequent favourable plating/stripping behaviour of symmetrical cells and this is explored in detail. An increase of the moisture content from 90 ppm to 400 ppm impedes both electrodeposition and electrodissolution of the Na+/Na. This is investigated at Ni electrodes using cyclic voltammetry at different Na+-salt concentrations to further understand the mechanism.