151 resultados para bead milling


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antiwetting BNNT films have been achieved by milling-ink method. Superhydrophobic (CA <5°) are demonstrated on films with stainless steel as substrate. The high density and purity are confirmed by EDX and NEXAFS. There are only a few oxygen point defects in the form of nitrogen vacancies due to ink and annealing process in air.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing demand for high strength materials with the development of technology and critical applications. Nano materials are newly developed materials with extremely high strength for this purpose. Nanobainite is a dual phase material containing alternate layers of bainitic ferrite in nano dimensions and retained austenite. Nanobainite is produced by isothermally holding austenitized steel at a temperature of 200°C or less, depending on the chemical composition, for 6 10 days until bainite forms and then cooling to room temperature using austempering. The experimental design consisted of face milling under 12 combinations of Depth of Cut (DOC)-1, 2 and 3mm; cutting speed-100 and 150m/min; constant feed-0.15mm/rev and coolant on/off. The machinability of the material is assessed by means of analysis, such as surface texture and microhardness. The assessment also involves microstructural comparisons before and after milling. Future work involves quantifying the microstructural phase before and after milling using XRD. The results obtained are used to assess the most favorable condition to cut this new variety of steel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium alloy Ti-6Al-4V is the most commonly used titanium alloy in the aerospace and biomedical industries due to its superior material properties. An experimental investigation has been carried out to evaluate the machinability of high performance aerospace alloys (Ti-6Al-4V) to determine their in service performance characteristics based on different machining strategies. Nearly 80-90% of the titanium used in airframes is Ti-6Al-4V. The experimental design consist of face milling Ti-6Al-4V at 12 different combinations of cutting parameters consisting of Depth Of Cut (DoC)- 1, 2 and 3 mm; speeds- 60 and 100 m/min; coolant on/off and at constant feed rate of 0.04mm/tooth. Post machining analysis consists of cutting force measurement, surface texture analysis and metallographic analysis. The future work consists of in-depth investigation into the phase transformational reactions during machining.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The demand for high strength materials and improvements in heat treatment techniques has given rise to this new form of high strength steel known as nanobainite steel. The production of nanobainite steel involves slow isothermal holding of austenitic steel around 200oC for 10 days, in order to obtain a carbon enriched austenite and cooling to room temperature using austempering. The microstructure of nanobainite steel is dual phase consisting of alternate layers of bainitic ferrite and austenite. The experimental design consists of face milling under 12 combination of Depth of Cut (DoC)-1, 2 and 3mm; cutting speed-100 and 150m/min; constant feed- 0.15mm/rev and coolant on/off. The machinability of the material is assessed by means of analysis such as metallography and cutting force analysis. The results obtained are used to assess the most favorable condition to machine this new variety of steel. Future work involves study on phase transformation by quantifying the microstructural phase before and after milling using XRD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of porous media to transmit fluids is commonly referred to as permeability. The concept of permeability is central for hydrocarbon recovery from petroleum reservoirs and for studies of groundwater flow in aquifers. Spatially resolved measurements of permeability are of great significance for fluid dynamics studies. A convenient concept of local Darcy’s law is suggested for parallel flow systems. The product of porosity and mean velocity images in the plane across the average flow direction is directly proportional to permeability. Single Point Ramped Imaging with T 1 Enhancement (SPRITE) permits reliable quantification of local fluid content and flow in porous media. It is particularly advantageous for reservoir rocks characterized by fast magnetic relaxation of a saturating fluid. Velocity encoding using the Cotts pulsed field gradient scheme improves the accuracy of measured flow parameters. The method is illustrated through measurements of 2D permeability maps in a capillary bundle, glass bead packs and composite sandstone samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 For the first time, produced silk particles with unique properties in the range of 7 µm – 200 nm using milling process which opens up new opportunities for silk particle for diverse applications especially drug delivery and tissue scaffolds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of regular additions of a surfactant (ethylene bis-stearamide; EBS) at different time intervals was investigated on the powder characteristics of a biomedical Ti-10Nb-3Mo alloy (wt.%). Ball milling was performed for 10 h on the elemental powders in four series of experiments at two rotation speeds (200 and 300 rpm). The addition of 2 wt.% total EBS at different time intervals during ball milling resulted in noticeable changes in particle size and morphology of the powders. The surfactant addition at shorter time intervals led to the formation of finer particles, a more homogenous powder distribution, a higher powder yield, and a lower contamination content in the final materials. Thermal analysis of the powders after ball milling suggested that differing decomposition rates of the surfactant were responsible for the measured powder particle changes and contamination contents. The results also indicated that the addition of surfactant during ball milling at 200 rpm caused a delay in the alloy formation, whereas ball milling at 300 rpm favored the formation of the titanium alloy.Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite LiFe0.4Mn0.6PO4/C microspheres are considered advanced cathode materials for electric vehicles and other high-energy density applications due to their advantages of high energy density and excellent cycling stability. LiFe0.4Mn0.6PO4/C microspheres have been produced using a double carbon coating process employing traditional industrial techniques (ball milling, spray-drying and annealing). The obtained LiFe0.4Mn0.6PO4 microspheres exhibit a high discharge capacity of around 166 mA h g-1 at 0.1 C and excellent rate capabilities of 132, 103, and 72 mA h g-1 at 5, 10, and 20 C, respectively. A reversible capacity of about 152 mA h g-1 after 500 cycles at a current density of 1 C indicates an outstanding cycling stability. The excellent electrochemical performance is attributed to the micrometer-sized spheres of double carbon-coated LiFe0.4Mn0.6PO4 nanoparticles with improved electric conductivity and higher Li ion diffusion coefficients, ensuring full redox reactions of all nanoparticles. The results show that the advanced high-energy density cathode materials can be produced using existing industry techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein we explore modern fabrication techniques for the development of chemiluminescence detection flow-cells with features not attainable using the traditional coiled tubing approach. This includes the first 3D-printed chemiluminescence flow-cells, and a milled flow-cell designed to split the analyte stream into two separate detection zones within the same polymer chip. The flow-cells are compared to conventional detection systems using flow injection analysis (FIA) and high performance liquid chromatography (HPLC), with the fast chemiluminescence reactions of an acidic potassium permanganate reagent with morphine and a series of adrenergic phenolic amines.