145 resultados para bake hardening


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deformation and fracture mechanisms of a low carbon microalloyed steel processed by asymmetric rolling (AsR) and symmetric rolling (SR) were compared by microstructural and texture evolutions during uniaxial tensile deformation. A realistic microstructure-based micromechanical modeling was involved as well. AsR provides more effective grain refinement and beneficial shear textures, leading to higher ductility and extraordinary strain hardening with improved yield and ultimate tensile stresses as well as promoting the occurrence of ductile fracture. This was verified and further explained by means of the different fracture modes during quasi-static uniaxial deformation, the preferred void nucleation sites and crack propagation behavior, and the change in the dislocation density based on the kernel average misorientation (KAM) distribution. The equivalent strain/stress partitioning during tensile deformation of AsR and SR specimens was modeled based on a two-dimensional (2D) representative volume element (RVE) approach. The trend of strain/stress partitioning in the ferrite matrix agrees well with the experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of grain microstructure on the age-hardening behavior is investigated on recrystallized and un-recrystallized Al-Cu-Li alloys by combining electron-backscatter-diffraction and micro-hardness mapping. The spatial heterogeneity of micro-hardness is found to be strongly dependent on the grain microstructure. Controlled experiments are carried out to change the pre-strain before artificial ageing. These experiments lead to an evaluation of the range of local strain induced by pre-stretching as a function of the grain microstructure and results in heterogeneous formation of the hardening T1 precipitates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low cycle fatigue (LCF) behaviour of a dual phase (DP) steel with different martensite morphologies has been investigated in the present work. DP steels with coarse martensite morphologies show inferior LCF life in comparison with fine martensite morphologies for all martensite volume fractions examined. It is suggested that this is be due to the development of larger local plastic strain concentrations in the ferrite with a coarser microstructure, compared to the finer microstructural morphology. Fatigue cracks were observed to initiate inside ferrite grains, and to preferentially propagate through the softer ferrite phase. The average sub-cell size was finer in samples with higher martensite volume fractions, but the sub-cell size was almost unaffected by the martensite morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of volume fraction and hardness of martensite on the Bauschinger effect in Dual Phase (DP) steel was investigated for strain levels close to those observed in automotive stamping. Five different grades of DP steel were produced by controlled heat treatment allowing the examination of the Bauschinger effect for three different volume fractions of martensite and three levels of martensite hardness. Compression-tension and shear reversal tests were performed to examine the Bauschinger effect at high levels of forming strain. Good correlation between the shear reversal and the compression-tension test was observed suggesting that for DP steel, shear stress strain data, converted to equivalent stress-strain, may be applied directly to characterize kinematic hardening behavior for numerical simulations. Permanent softening was observed following strain reversal and increased with martensite volume fraction and pre-strain level. While the Bauschinger ratio saturates at 3% pre-strain, the Bauschinger strain increases linearly with forming strain without showing saturation. This suggests that to model material behavior accurately in forming processes involving complex loading paths and high levels of strain, test data generated at high strain is required.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract A model for tensile twinning during the compression of rod textured magnesium is developed based on the idea that these twins nucleate at grain boundaries and that when the twin number density per grain is low these twins readily give rise to the formation of other 'interaction' twins in adjacent grains. Experimental observations of twin aspect ratios measured at a single grain size and twin number densities measured over four grain sizes were used to determine model material parameters. Using these, the model provides reasonable predictions for the observed magnitudes and trends for the following observations:Effect of grain size and stress on twin volume fraction, fractional twin length and the fraction of twin contact.Effect of grain size on the yield stress.Effect of grain size on the general shape of the stress-strain curve at low strains. A parametric study shows the model to be quite robust but that it is particularly sensitive to the value of the exponent assumed for the twin nucleation rate law. It is seen that preventing the formation of interaction twins provides an important avenue for hardening and that the flow stress is also particularly sensitive to the relaxation of the twin back stresses. The model shows the importance of taking microstructure into account when modelling twinning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the chip formation mechanism and machinability of two-phase materials, such as, wrought duplex stainless steel alloys SAF 2205 and SAF 2507. SEM and optical microscopic details of the frozen cutting zone and chips revealed that the harder austenite phase dissipates in the advancement of the cutting tool, being effectively squeezed out of the softer ferrite phase. Microhardness profiles reveal correlation in hardness from the workpiece material transitioning to the chip. The tool wear (TiAIN + TiN coated solid carbide twist drill) and machining forces were investigated. Tool wear, was dominantly due to the adhesion process which developed from built-up edge formation, is highly detrimental to the flank face. Flute damage was also observed as a major issue in the drilling of duplex alloys leading to premature tool failure. Duplex 2507 shows higher sensitivity to cutting speed during machining and strain hardening at higher velocity and less machinability due to presence of higher percentage of Ni, Mo and Cr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of deformation parameters on the flow behavior of a Ti6Al4V alloy has been studied to understand the deformation mechanisms during hot compression. Cylindrical samples with partially equiaxed grains were deformed in the α+β phase region at different thermo-mechanical conditions. To develop components with tailored properties, the physically based Estrin and Mecking (EM) model for the work hardening/dynamic recovery combined with the Avrami equation for dynamic recrystallization was used to predict the flow stress at varying process conditions. The EM model revealed good predictability up to the peak strain, however, at strain rates below 0.01s-1, a higher B value was observed due to the reduced density of dislocation tangles. In contrast, the flow softening model revealed higher value of constants a and b at high strain rates due to the reduction in the volume fraction of dynamic recrystallization and larger peak strain. The predicted flow stress using the combined EM+Avrami model revealed good agreement with the measured flow stress resulted in very low average absolute relative error value. The microstructural analysis of the samples suggests the formation of coarse equiaxed grains together with the increased β phase fraction at low strain rate leads to a higher flow softening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plastic strain gradients can influence the work-hardening behaviour of metals due to the accumulation of geometrically necessary discolations at the micron/submicron scale. A finite element model based on the conventional theory of mechanism-based strain-gradient plasticity has been developed to simulate the micropillar compression of Cu–Fe thin films and multilayers. The modelling results show that the geometric constraints lead to inhomogeneous deformation in the Cu layers, which agrees well with the bulging of Cu layers observed experimentally. Plastic strain gradients develop inside the individual layers, leading to extra work-hardening due to the accumulation of geometrically necessary dislocations. In the multilayer specimens, the Cu layers deform more severely than the Fe layers, resulting in the development of tensile stresses in the Fe layers. It is proposed that these tensile stresses are responsible for the development of micro-cracks in the Fe layers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stainless steel is the most widely used alloys of steel. The reputed variety of stainless steel having customised material properties as per the design requirements is Duplex Stainless Steel and Austenitic Stainless Steel. The Austenite Stainless Steel alloy has been developed further to be Super Austenitic Stainless Steel (SASS) by increasing the percentage of the alloying elements to form the half or more than the half of the material composition. SASS (Grade-AL-6XN) is an alloy steel containing high percentages of nickel (24%), molybdenum (6%) and chromium (21%). The chemical elements offer high degrees of corrosion resistance, toughness and stability in a large range of hostile environments like petroleum, marine and food processing industries. SASS is often used as a commercially viable substitute to high cost non-ferrous or non-metallic metals. The ability to machine steel effectively and efficiently is of utmost importance in the current competitive market. This paper is an attempt to evaluate the machinability of SASS which has been a classified material so far with very limited research conducted on it. Understanding the machinability of this alloy would assist in the effective forming of this material by metal cutting. The novelty of research associated with this is paper is reasonable taking into consideration the unknowns involved in machining SASS. The experimental design consists of conducting eight milling trials at combination of two different feed rates, 0.1 and 0.15 mm/tooth; cutting speeds, 100 and 150 m/min; Depth of Cut (DoC), 2 and 3 mm and coolant on for all the trials. The cutting tool has two inserts and therefore has two cutting edges. The trial sample is mounted on a dynamometer (type 9257B) to measure the cutting forces during the trials. The cutting force data obtained is later analyzed using DynaWare supplied by Kistler. The machined sample is subjected to surface roughness (Ra) measurement using a 3D optical surface profilometer (Alicona Infinite Focus). A comprehensive metallography process consisting of mounting, polishing and etching was conducted on a before and after machined sample in order to make a comparative analysis of the microstructural changes due to machining. The microstructural images were capture using a digital microscope. The microhardness test were conducted on a Vickers scale (Hv) using a Vickers microhardness tester. Initial bulk hardness testing conducted on the material show that the alloy is having a hardness of 83.4 HRb. This study expects an increase in hardness mostly due to work hardening may be due to phase transformation. The results obtained from the cutting trials are analyzed in order to judge the machinability of the material. Some of the criteria used for machinability evaluation are cutting force analysis, surface texture analysis, metallographic analysis and microhardness analysis. The methodology followed in each aspect of the investigation is similar to and inspired by similar research conducted on other materials. However, the novelty of this research is the investigation of various aspects of machinability and drawing comparisons between each other while attempting to justify each result obtained to the microstructural changes observed which influence the behaviour of the alloy. Due to the limited scope of the paper, machinability criteria such as chip morphology, Metal Removal Rate (MRR) and tool wear are not included in this paper. All aspects are then compared and the optimum machining parameters are justified with a scope for future investigations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microalloying trace elements into aluminum alloys have been shown to improve mechanical properties by altering the precipitation process. Here, trace amounts of Sn and (Sn + Ag) have been added to Al-1.1Cu-1.7Mg (at.%) and the effects have been investigated by a combination of hardness testing and transmission electron microscopy (TEM). Hardness testing shows that the addition of Sn increases the hardness throughout the ageing process, and in combination with Ag, further increases the hardness and shortens the time to reach the peak hardness. The increase in hardness via Sn microalloying is attributed to the homogeneous distribution of S phase (Al2CuMg) precipitates. In the alloy microalloyed with both Sn and Ag, the microstructure is dominated by homogeneously distributed Ω phase (Al2Cu) precipitates in the peak strengthened condition. Given that neither spherical β-Sn precipitates, nor any other obvious nucleation sites for the Ω phase precipitates were observed using TEM, the mechanism for development of such homogeneous precipitation remains to be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wrinkling occurs when a blank is subjected to compressive stresses during the forming process as in the flange of a cup during drawing. Although the failure limit due to plastic flow localization can be simply defined by the FLC at each point of a continuum, the wrinkling limit cannot be defined with simple variables such as strain, stress, and thickness. Wrinkling is strongly affected by the mechanical properties of the sheet material, the geometry of the tools and blank, and contact conditions. The analysis of wrinkling initiation and growth is, therefore, difficult to perform due to the complex synergistic effects of the controlling parameters. Because of these difficulties, the study of wrinkling has generally been conducted case by case. A unique wrinkling criterion, which could be used effectively for various sheet forming processes, has not yet been proposed. There were many investigations on the effect of process parameters (BHF and friction) and geometry on wrinkling. However, there are few reported results on the influence of the material model on wrinkling. This paper shows how strain hardening and r-values affect wrinkle formation in its magnitude, initiation, and direction through the NUMISHEET2014 benchmark test for wrinkling during cup drawing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nonlinear unloading behavior of three different commercial dual-phase steels (DP780 grade equivalent) was examined. These steels exhibited small variations in chemical composition (0.07 to 0.10 mass percent carbon) and martensite volume fraction (0.23 to 0.28), and they demonstrated similar hardening behavior. Uniaxial loading-unloading-loading tests were conducted at room temperature and quasi-static strain rates between engineering strains of 0.5 and 8%. Steel microstructures were examined using electron backscatter diffraction and nanoindentation techniques. The microplastic component of the unloading strain exhibited no dependence on the martensite volume fraction or the ferrite grain size within the small range encountered in this investigations. Instead, the magnitude of the microplastic component of the unloading strain increased as the strength ratio between the martensite and ferrite phases increased. Correspondingly, the apparent unloading modulus, or chord modulus, exhibited a greater reduction for equivalent increments of strain hardening as the strength ratio increased. These results suggest that springback can be reduced in structures containing two ductile phases if the strength ratio between the harder and softer phases is reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Excellent superplastic elongations (in excess of 1,200%) were achieved in a commercial cast AZ31 alloy processed by low temperature equal-channel angular pressing (ECAP) with a back-pressure to produce a bimodal grain structure. In contrast, AZ31 alloy processed by ECAP at temperatures higher than 200 °C showed a reasonably uniform grain structure and relatively low ductility. It is suggested that a bimodal grain structure is advantageous because the larger grains contribute to strain hardening thus delaying the onset of necking, while grain boundary sliding associated with small grains provides a stabilizing effect due to enhanced strain rate sensitivity. © 2008 Springer Science+Business Media, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation was initiated to evaluate the feasibility of using equal-channel angular pressing (ECAP) to obtain high superplastic elongations in the AZ31 alloy with a back pressure producing a bimodal grain structure. Processing by ECAP was performed using a die with an angle of 90 ° between the two parts of the channel and a ram velocity of 15-20 mm/sec. Some pressing were conducted with a back-pressure by making use of a backward punch in the exit channel of the die. Molybdenum disulphide and a graphite spray were used as lubricants and billets were pressed using processing route B c in which each billet is rotated by 90 °. The pressing were conducted at temperatures in the range from 423 to 523 K and every billet was quenched in water after each pass. The significance of the bimodal microstructure is attributed to the ability of the larger grains to more easily accommodate grain boundary sliding through intragranular slip and twinning and to contribute to the strain hardening capability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the impact of coiling temperature and duration on the phase transformation and precipitation behavior of a low carbon and low niobium direct strip cast steel. Coiling was performed at three carefully chosen temperatures: (1) in the ferrite (600°C), (2) during the austenite decomposition (700°C) and (3) in the austenite (850°C). The coiling conditions were found to strongly affect the final microstructure and hardness response, thus highlighting the necessity to judiciously design the coiling treatment. Optical microscopy, and scanning and transmission electron microscopy were used to characterize the microstructural constituents (polygonal ferrite, bainite and pearlite) and the NbC precipitates. Vickers macrohardness measurements are utilized to quantify the mechanical properties. The differences in hardening kinetics for the three different temperatures are shown to come from a complex combination of strengthening contributions.