126 resultados para Perception de étudiants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives To establish the association between the patient's perception of fault for the crash and 12-month outcomes after non-fatal road traffic injury.Setting Two adult major trauma centres, one regional trauma centre and one metropolitan trauma centre in Victoria, Australia.Participants 2605 adult, orthopaedic trauma patients covered by the state's no-fault third party insurer for road traffic injury, injured between September 2010 and February 2014.Outcome measures EQ-5D-3L, return to work and functional recovery (Glasgow Outcome Scale—Extended score of upper good recovery) at 12 months postinjury.Results After adjusting for key confounders, the adjusted relative risk (ARR) of a functional recovery (0.57, 95% CI 0.46 to 0.69) and return to work (0.92, 95% CI 0.86 to 0.99) were lower for the not at fault compared to the at fault group. The ARR of reporting problems on EQ-5D items was 1.20–1.35 times higher in the not at fault group. Conclusions Patients who were not at fault, or denied being at fault despite a police report of fault, experienced poorer outcomes than the at fault group. Attributing fault to others was associated with poorer outcomes. Interventions to improve coping, or to resolve negative feelings from the crash, could facilitate better outcomes in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract—Nowadays, classical washout filters are extensively used in commercial motion simulators. Even though there are several advantages for classical washout filters, such as short processing time, simplicity and ease of adjustment, they have several shortcomings. The main disadvantage is the fixed scheme and parameters of the classical washout filter cause inflexibility of the structure and thus the resulting simulator fails to suit all circumstances. Moreover, it is a conservative approach and the platform cannot be fully exploited. The aim of this research is to present a fuzzy logic approach and take the human perception error into account in the classical motion cueing algorithm, in order to improve both the physical limits of restitution and realistic human sensations. The fuzzy compensator signal is applied to adjust the filtered signals on the longitudinal and rotational channels online, as well as the tilt coordination to minimize the vestibular sensation error below the human perception threshold. The results indicate that the proposed fuzzy logic controllers significantly minimize the drawbacks of having fixed parameters and conservativeness in the classical washout filter. In addition, the performance of motion cueing algorithm and human perception for most occasions is improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To test for the presence of sex-based differences in perception (the notion that men and women "think" differently, and that differences in perception are biologically based) among healthcare professionals. DESIGN: Prospective survey. SETTING AND PARTICIPANTS: 90 medical personnel at a tertiary care hospital in Newcastle, NSW. INTERVENTION: Healthcare professionals were shown two pictures that could be interpreted as depicting either a young or an old person, and a word that could be seen as geometric shapes. MAIN OUTCOME MEASURES: The effects of sex, age, seniority, and specialisation in relation to the first impression of the image, the ability to change one's perception, and the speed of perception. RESULTS: Contrary to popular opinion, male physicians were more likely to perceive the older figures, and just as likely as women to be able to change their perception. Surgeons and junior staff were more likely to see, as well as being faster to form, an impression requiring abstract thought, and were more able to change their perceptions. CONCLUSIONS: Traditional sex stereotypes do not apply to medical personnel, but other age-based stereotypes, and professional rivalries (medical versus surgical) may have some empiric basis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a novel general framework for line segment perception, which is motivated by a biological visual cortex, and requires no parameter tuning. In this framework, we design a model to approximate receptive fields of simple cells. More importantly, the structure of biological orientation columns is imitated by organizing artificial complex and hypercomplex cells with the same orientation into independent arrays. Besides, an interaction mechanism is implemented by a set of self-organization rules. Enlightened by the visual topological theory, the outputs of these artificial cells are integrated to generate line segments that can describe nonlocal structural information of images. Each line segment is evaluated quantitatively by its significance. The computation complexity is also analyzed. The proposed method is tested and compared to state-of-the-art algorithms on real images with complex scenes and strong noises. The experiments demonstrate that our method outperforms the existing methods in the balance between conciseness and completeness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Motion Cueing Algorithm (MCA) transforms longitudinal and rotational motions into simulator movement, aiming to regenerate high fidelity motion within the simulators physical limitations. Classical washout filters are widely used in commercial simulators because of their relative simplicity and reasonable performance. The main drawback of classical washout filters is the inappropriate empirical parameter tuning method that is based on trial-and-error, and is effected by programmers’ experience. This is the most important obstacle to exploiting the platform efficiently. Consequently, the conservative motion produces false cue motions. Lack of consideration for human perception error is another deficiency of classical washout filters and also there is difficulty in understanding the effect of classical washout filter parameters on generated motion cues. The aim of this study is to present an effortless optimization method for adjusting the classical MCA parameters, based on the Genetic Algorithm (GA) for a vehicle simulator in order to minimize human sensation error between the real and simulator driver while exploiting the platform within its physical limitations. The vestibular sensation error between the real and simulator driver as well as motion limitations have been taken into account during optimization. The proposed optimized MCA based on GA is implemented in MATLAB/Simulink. The results show the superiority of the proposed MCA as it improved the human sensation, maximized reference signal shape following and exploited the platform more efficiently within the motion constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vestibular system, which consists of semicircular canals and otolith, are the main sensors mammals use to perceive rotational and linear motions. Identifying the most suitable and consistent mathematical model of the vestibular system is important for research related to driving perception. An appropriate vestibular model is essential for implementation of the Motion Cueing Algorithm (MCA) for motion simulation purposes, because the quality of the MCA is directly dependent on the vestibular model used. In this review, the history and development process of otolith models are presented and analyzed. The otolith organs can detect linear acceleration and transmit information about sensed applied specific forces on the human body. The main purpose of this review is to determine the appropriate otolith models that agree with theoretical analyses and experimental results as well as provide reliable estimation for the vestibular system functions. Formulating and selecting the most appropriate mathematical model of the vestibular system is important to ensure successful human perception modelling and simulation when implementing the model into the MCA for motion analysis.