128 resultados para Mg doping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

 The thesis systematically presents several methods to synthesize the photocatalytic activity reduced ZnO by impurity doping and coating which is suitable for many commercial and medical applications in sun-screening area. The author has published one book chapter and many high quality journal papers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to assess a number of coatings developed for Mg for biomedical applications. The Mg substrates were high-purity (HP) Mg and ME10, an alloy recently developed for improved extrudability. The research utilized the new fishing-line specimen configuration to allow direct comparison to our recent in vivo and in vitro measurements. The in vitro measurements were immersion tests of fishing-line specimens immersed in Nor's solution at 37 °C. Tests of substantial duration are needed because the corrosion rates of uncoated samples are low. Nor's solution is the designation given to Hank's solution through which CO2 is bubbled at a partial pressure of 0.009 atm. In this solution, pH is maintained constant by the interaction of CO2 and the bicarbonate ions in the solution. This is the same buffer as that which maintains the pH of blood. Coatings examined were: (i) an anodization using a bio-friendly alkaline electrolyte consisting of phosphate, borate, and metasilicate, (ii) octyltrimethoxysilane (OSi), (iii) 1,2-bis[triethoxysilyl]ethane (BTSE), (iv) anodization+OSi, and (v) anodization + BTSE. The performance of coated samples was comparable to or better than that of the uncoated samples, and there was a substantially better performance for the ME10 samples after anodization+OSi. Reasons for the various performances are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extruded Mg-1Mn-2Zn-xNd alloys (x=0.5, 1.0, 1.5 mass %) have been developed for their potential use as biomaterials. The extrusion on the alloys was performed at temperature of 623K with an extrusion ratio of 14.7 under an average extrusion speed of 4mm/s. The microstructure, mechanical property, corrosion behavior and biocompatibility of the extruded Mg-Mn-Zn-Nd alloys have been investigated in this study. The microstructure was examined using X-ray diffraction analysis and optical microscopy. The mechanical properties were determined from uniaxial tensile and compressive tests. The corrosion behavior was investigated using electrochemical measurement. The biocompatibility was evaluated using osteoblast-like SaOS2 cells. The experimental results indicate that all extruded Mg-1Mn-2Zn-xNd alloys are composed of both α phase of Mg and a compound of Mg7Zn3 with very fine microstructures, and show good ductility and much higher mechanical strength than that of cast pure Mg and natural bone. The tensile strength and elongation of the extruded alloys increase with an increase in neodymium content. Their compressive strength does not change significantly with an increase in neodymium content. The extruded alloys show good biocompatibility and much higher corrosion resistance than that of cast pure Mg. The extruded Mg-1Mn-2Zn-1.0Nd alloy shows a great potential for biomedical applications due to the combination of enhanced mechanical properties, high corrosion resistance and good biocompatibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Mg2Si1-xSnx thermoelectric compounds were synthesized through a solid-state reaction at 700 °C between chips of Mg2Sn-Mg eutectic alloy and silicon fine powders. The Al dopants were introduced by employing AZ31 magnesium alloy that contains aluminum. The as-synthesized Mg2Si1-xSnx powders were consolidated by spark plasma sintering at 650-700 °C. X-ray diffraction and scanning electron microscopy revealed that the Mg2Si1-xSnx bulk materials were comprised of Si-rich and Sn-rich phases. Due to the complex microstructures, the electrical conductivities of Mg2Si1-xSnx are lower than Mg2Si. As a result, the average power factor of Al0.05Mg2Si0.73Sn0.27 is about 1.5 × 10-3 W/mK2 from room temperature to 850 K, being less than 2.5 × 10-3 W/mK2 for Al0.05Mg2Si. However, the thermal conductivity of Mg2Si1-xSnx was reduced significantly as compared to Al0.05Mg2Si, which enabled the ZT of Al0.05Mg2Si0.73Sn0.27 to be superior to Al0.05Mg2Si. Lastly, the electric power generation from one leg of Al0.05Mg2Si and Al0.05Mg2Si0.73Sn0.27 were evaluated on a newly developed instrument, with the peak output power of 15-20 mW at 300 °C hot-side temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract A model for tensile twinning during the compression of rod textured magnesium is developed based on the idea that these twins nucleate at grain boundaries and that when the twin number density per grain is low these twins readily give rise to the formation of other 'interaction' twins in adjacent grains. Experimental observations of twin aspect ratios measured at a single grain size and twin number densities measured over four grain sizes were used to determine model material parameters. Using these, the model provides reasonable predictions for the observed magnitudes and trends for the following observations:Effect of grain size and stress on twin volume fraction, fractional twin length and the fraction of twin contact.Effect of grain size on the yield stress.Effect of grain size on the general shape of the stress-strain curve at low strains. A parametric study shows the model to be quite robust but that it is particularly sensitive to the value of the exponent assumed for the twin nucleation rate law. It is seen that preventing the formation of interaction twins provides an important avenue for hardening and that the flow stress is also particularly sensitive to the relaxation of the twin back stresses. The model shows the importance of taking microstructure into account when modelling twinning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, the effect of precipitate characteristics on {101-2} extension twinning have been studied in a Z6 magnesium alloy. A strongly textured Z6 alloy plate was mechanically tested in twinning dominated orientation in solution treated and aged states. Optical microscopy, transmission electron microscopy (TEM) and visco-plastic self consistent (VPSC) modelling are used to examine the effect of precipitate characteristics on twinning. The yield stress was observed to increase by ~80. MPa during ageing and it was estimated that CRSS for twinning increased by ~29. MPa based on VPSC simulations. The increment of twin system strengthening can be attributed to back stress generated by elastically deforming particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface passivation of AZNd Mg alloy with Pr(NO3)3 is studied using scanning electrochemical microscopy (SECM) in surface generation/tip collection (SG/TC) and AC modes. Corrosion protection afforded by the Pr treatment and the degradation mechanism in a simulated biological environment was examined on a local scale and compared with non-treated AZNd. SG/TC mode results revealed a drastic decrease in H2 evolution due to the Pr treatment. Mapping the local insulating characteristics using AC-SECM showed higher conductivity of the surface where H2 evolution was most favorable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microalloying trace elements into aluminum alloys have been shown to improve mechanical properties by altering the precipitation process. Here, trace amounts of Sn and (Sn + Ag) have been added to Al-1.1Cu-1.7Mg (at.%) and the effects have been investigated by a combination of hardness testing and transmission electron microscopy (TEM). Hardness testing shows that the addition of Sn increases the hardness throughout the ageing process, and in combination with Ag, further increases the hardness and shortens the time to reach the peak hardness. The increase in hardness via Sn microalloying is attributed to the homogeneous distribution of S phase (Al2CuMg) precipitates. In the alloy microalloyed with both Sn and Ag, the microstructure is dominated by homogeneously distributed Ω phase (Al2Cu) precipitates in the peak strengthened condition. Given that neither spherical β-Sn precipitates, nor any other obvious nucleation sites for the Ω phase precipitates were observed using TEM, the mechanism for development of such homogeneous precipitation remains to be determined.