170 resultados para Lithium batteries


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemical behaviour of Co3O4 with sodium is reported here. Upon cycling in the voltage window of 0.01–3.0 V, Co3O4 undergoes a conversion reaction and exhibits a reversible capacity of 447 mA h g−1 after 50 cycles. Therefore, nanostructured Co3O4 presents feasible electrochemical sodium storage, offering possibilities to develop new anode materials for sodium-ion batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The charging of an undivided cerium–zinc redox battery by various current waveforms some of which mimic the output of renewable energy (solar, wind, tidal, biofuel burning) to electricity transducers is considered in this work, where the battery operates through diffusion-only conditions, and is discharged galvanostatically. Under reasonable assumption, the mathematical model developed enables the observation that the performance characteristic of the cells charged with a constant power input differentiates between the various current–charge waveforms, with cell geometry and electrode kinetics playing subtle, but significant, roles; in particular, high efficiency is observed for sunlight-charged batteries which are thin and suffer no corrosion of the sacrificial electrode, and which have already experienced a charge–discharge cycle. The performance characteristics of the systems are interpreted in the light of consequences for smart grid realisation, and indicate that, for a constant power input, the most matched renewable is biofuel burning with a current output that linearly increases with time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(triazine imide) with intercalation of lithium and chloride ions (PTI/Li+Cl−) was synthesized by temperature-induced condensation of dicyandiamide in a eutectic mixture of lithium chloride and potassium chloride as solvent. By using this ionothermal approach the well-known problem of insufficient crystallinity of carbon nitride (CN) condensation products could be overcome. The structural characterization of PTI/Li+Cl− resulted from a complementary approach using spectroscopic methods as well as different diffraction techniques. Due to the high crystallinity of PTI/Li+Cl− a structure solution from both powder X-ray and electron diffraction patterns using direct methods was possible; this yielded a triazine-based structure model, in contrast to the proposed fully condensed heptazine-based structure that has been reported recently. Further information from solid-state NMR and FTIR spectroscopy as well as high-resolution TEM investigations was used for Rietveld refinement with a goodness-of-fit (χ2) of 5.035 and wRp=0.05937. PTI/Li+Cl− (P63cm (no. 185); a=846.82(10), c=675.02(9) pm) is a 2D network composed of essentially planar layers made up from imide-bridged triazine units. Voids in these layers are stacked upon each other forming channels running parallel to [001], filled with Li+ and Cl− ions. The presence of salt ions in the nanocrystallites as well as the existence of sp2-hybridized carbon and nitrogen atoms typical of graphitic structures was confirmed by electron energy-loss spectroscopy (EELS) measurements. Solid-state NMR spectroscopy investigations using 15N-labeled PTI/Li+Cl− proved the absence of heptazine building blocks and NH2 groups and corroborated the highly condensed, triazine-based structure model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium is a unique and effective psychotropic agent with a long-standing history of clinical use yet it is increasingly overlooked in lieu of newer agents. The purpose of the present paper was to succinctly review the therapeutic profile of lithium particularly with respect to the treatment of mood disorders and consider its unique properties and clinical utility. A comprehensive literature review pertaining to lithium was undertaken using electronic database search engines to identify relevant clinical trials, meta-analyses and Cochrane reviews. In addition articles and book chapters known to the authors were carefully reviewed, and the authors appraised published guidelines. The evidence from these sources was rated using National Health and Medical Research Council evidence levels and synthesized according to phenotype and mood states. In addition, the authors have drawn upon published guidelines and their own clinical experience. Lithium has specificity for mood disorders with proven efficacy in the treatment of both unipolar depression and bipolar disorder. The recommendations are based predominantly on Level I evidence, but its clinical use has to be tempered against potential side-effects and the need for ongoing monitoring. In practice, lithium should be considered a first-line option in bipolar disorder, especially in prophylaxis and when onset of action is not an imperative. Lithium has been in use in modern medicine for 60 years and as such has been tried and tested across the full range of mood disorders. Arguably, lithium is the only true mood stabilizer and because of its unique properties is in a class of its own.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physicochemical properties of a range of NaNTf2 (or NaTFSI) salt concentrations in N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide (or C3mpyrFSI) ionic liquid were investigated by DSC, conductivity, cyclic voltammetry and diffusivity studies. Cyclic voltammetry indicated a stable sodium plating behavior with a current of 5 mA cm(-2) at 25 °C to 20 mA cm(-2) at 100 °C, along with high reversibility identifying this electrolyte as a possible candidate for sodium-ion or sodium metal battery applications. (23)Na NMR chemical shifts and spectral linewidths (FWHM) indicate a complex coordination of the Na(+) ion which is dependent on both temperature and salt concentration with an apparently stronger coordination to the NTf2 anion upon increasing the NaNTf2 concentration. Temperature dependent PFG-NMR diffusion measurements show that both FSI and NTf2 have a comparable behaviour although the smaller FSI anion is more diffusive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hierarchical porous composites are a potentially attractive material for high-rate cathode. This work presents a facile sol-gel process for the fabrication of a hierarchical porous C/LiFePO4/bio-C composite by using artemia cyst shells as natural biological carbon templates. The C/LiFePO4/bio-C composite exhibits a superior electrochemical performance with discharge capacities of 105 mA h g-1, 93 mA h g-1 and 80 mA h g-1 at 5 C, 10 C and 20 C, respectively. Remarkably, it produces a high discharge capacity of 69.1 mA h g-1 and no fading after 50 cycles even at a high current density of 6800 mA g-1. This journal is

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite LiFe0.4Mn0.6PO4/C microspheres are considered advanced cathode materials for electric vehicles and other high-energy density applications due to their advantages of high energy density and excellent cycling stability. LiFe0.4Mn0.6PO4/C microspheres have been produced using a double carbon coating process employing traditional industrial techniques (ball milling, spray-drying and annealing). The obtained LiFe0.4Mn0.6PO4 microspheres exhibit a high discharge capacity of around 166 mA h g-1 at 0.1 C and excellent rate capabilities of 132, 103, and 72 mA h g-1 at 5, 10, and 20 C, respectively. A reversible capacity of about 152 mA h g-1 after 500 cycles at a current density of 1 C indicates an outstanding cycling stability. The excellent electrochemical performance is attributed to the micrometer-sized spheres of double carbon-coated LiFe0.4Mn0.6PO4 nanoparticles with improved electric conductivity and higher Li ion diffusion coefficients, ensuring full redox reactions of all nanoparticles. The results show that the advanced high-energy density cathode materials can be produced using existing industry techniques.