134 resultados para GRAPHENE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An in situ polymerization strategy was used to functionalize graphene oxide (GO) with poly(N,N-dimethyl amino ethylmethacrylate) (PDMAEMA) for the selective removal of anionic dyes. Various characterization methods demonstrate that PDMAEMA-grafted GO (GO-PDMAEMA) was successfully synthesized, and the high PDMAEMA content of 68.5% in GO-PDMAEMA changed the zeta potential significantly from -36.5 (GO) to 41.5 (GO-PDMAEMA). This change in the charge of GO-PDMAEMA greatly increased the adsorption capacities for anionic dye orange G (OG) compared to the pristine GO. The maximum adsorption capacity for anionic OG dye based on the Langmuir model is 609.8 mg g-1. The adsorption mechanism is believed to be a consecutive process of intra-particle diffusion and surface adsorption, with electrostatic interactions as the key driving force. The GO-PDMAEMA nanocomposite also showed excellent regeneration capacity and selectivity towards the separation of various anionic dyes (i.e. OG, Eosin yellow and Congo red) from an aqueous dye mixture. In conclusion, our method offers a promising strategy for developing new anionic dye adsorbents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite great advances, it remains highly attractive but challenging to create high-performance polymeric materials combining excellent flame-retardancy and outstanding thermal, mechanical and electrical properties. We herein demonstrate a novel strategy for fabricating a multifunctional nano-additive (Br-Sb2O3@RGO) based on graphene decorated with bromine and nano-Sb2O3. Cone calorimetric tests show that incorporating 10 wt% Br-Sb2O3@RGO into thermoplastic polyurethane (TPU) strikingly prolongs the time to ignition and decreases the peak heat release rate by 72%. Besides, tensile strength and Young's modulus are enhanced by 37% and 820%, respectively. Meanwhile, the electric conductibility is increased by eleven orders of magnitude relative to the TPU matrix. This work provides a promising strategy for addressing the critical bottleneck with the existing flame retardants that only enhance flame retardancy at the expense of mechanical properties of polymeric materials. As-prepared high-performance TPU composites are expected to find many applications, especially in aerospace, tissue engineering, and cables and wires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strain sensors with high elastic limit and high sensitivity are required to meet the rising demand for wearable electronics. Here, we present the fabrication of highly sensitive strain sensors based on nanocomposites consisting of graphene aerogel (GA) and polydimethylsiloxane (PDMS), with the primary focus being to tune the sensitivity of the sensors by tailoring the cellular microstructure through controlling the manufacturing processes. The resultant nanocomposite sensors exhibit a high sensitivity with a gauge factor of up to approximately 61.3. Of significant importance is that the sensitivity of the strain sensors can be readily altered by changing the concentration of the precursor (i.e., an aqueous dispersion of graphene oxide) and the freezing temperature used to process the GA. The results reveal that these two parameters control the cell size and cell-wall thickness of the resultant GA, which may be correlated to the observed variations in the sensitivities of the strain sensors. The higher is the concentration of graphene oxide, then the lower is the sensitivity of the resultant nanocomposite strain sensor. Upon increasing the freezing temperature from −196 to −20 °C, the sensitivity increases and reaches a maximum value of 61.3 at −50 °C and then decreases with a further increase in freezing temperature to −20 °C. Furthermore, the strain sensors offer excellent durability and stability, with their piezoresistivities remaining virtually unchanged even after 10 000 cycles of high-strain loading−unloading. These novel findings pave the way to custom design strain sensors with a desirable piezoresistive behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-performance reduced graphene oxide/nickel foam (rGO/NF) composite electrodes for high-performance supercapacitors were prepared by flame-induced reduction of dry graphene oxide (GO) coated on nickel foam. Flame reduction of GO is a facile, feasible and cost-effective reduction technique, which is conducted without the need of any reductant. Most importantly, the rGO obtained by flame reduction showed a typical disordered cross-linking network and randomly distributed pores, which provide accessible routes for fast transportation of ions. It was demonstrated that the rGO/NF electrode with embedded current collector (NF) exhibited better electrochemical performance than conventional rGO film counterparts, including a high gravimetric specific capacitance of 228.6 F g-1 at a current density of 1 A g-1, excellent rate capability (over 81% retention at 32 A g-1) and high cycling stability with only 5.3% capacitance decay over 10,000 cycles of cyclic voltammetry at a ultrahigh scan rate of 1000 mV s-1. This facile method for the fabrication of rGO/NF electrodes could envision enormous potential for high performance energy storage devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene oxide (GO) based magnetic nano-sorbent was synthesized by assembling the Fe3O4 and GO on the surface of polystyrene (denoted as PS@Fe3O4@GO). The morphology of the nano-sorbent was studied using scanning electron microscopy (SEM), while their individual nano-components were characterized using UV-visible spectroscopy, atomic force microscopy (AFM), zeta potential, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The assembled nano-sorbent was further investigated for Pb (II) ions removal by optimizing the parameters including pH, temperature and contact time. The obtained data was modelled for adsorption kinetics, adsorption isotherms and thermodynamics. Kinetic experiments indicated the Pb (II) adsorption followed first order kinetics. The adsorption equilibrium data fits Langmuir isotherm model well and the adsorption process was found to be spontaneous. The adsorption capacity of the prepared nano-sorbent was estimated to be 73.52mgg-1, with a maximum removal of 93.78% at pH 6. The nano-sorbent can be regenerated by nitric acid (HNO3) for reuse. FT-IR and X-ray photoelectron spectroscopy (XPS) studies confirmed the interactions between the Pb (II) ions and the nano-sorbent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the influence of chemically reduced graphene oxide sheets (CRGOs) on the electrochemical performance through methyl or carboxylic acid terminated self-assembled monolayers (SAMs) is reported. The gold electrode was initially modified with methyl or carboxylic acid terminated alkanethiols with various carbon chain lengths (n = 4, 6, 8 and 11) and subsequently immobilization of the CRGOs on a SAM surface was achieved via a hydrophobic and electrostatic interaction. By using the potassium ferricyanide as a redox probe, it was observed that CRGOs could effectively enhance the heterogeneous electron transfer (ET) of the SAM due to a tunneling effect. The assemblies based on thiol end groups with methyl head groups were observed to afford more hydrophobic interaction binding with CRGOs with a higher reduction time than the assemblies developed with thiol end groups and a -COOH group which were shown to bind more electrostatically with CRGOs, a lowering reduction time. The Nyquist plots developed show a gradual decrease of the charge transfer resistance (Rct) of [Fe(CN)6]3-/4- redox couple at the CRGOs-SAMs electrode with the controllable adsorption of different CRGO's onto the SAM. Depending on the chain length and terminal functional group the electron transfer rate kinetics were observed to differ considerably.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damage of optic nerve will cause permanent visual field loss and irreversible ocular diseases, such as glaucoma. The damage of optic nerve is mainly derived from the atrophy, apoptosis or death of retinal ganglion cells (RGCs). Though some progress has been achieved on electronic retinal implants that can electrically stimulate undamaged parts of RGCs or retina to transfer signals, stimulated self-repair/regeneration of RGCs has not been realized yet. The key challenge for development of electrically stimulated regeneration of RGCs is the selection of stimulation electrodes with a sufficient safe charge injection limit (Q(inj), i.e., electrochemical capacitance). Most traditional electrodes tend to have low Q(inj) values. Herein, we synthesized polypyrrole functionalized graphene (PPy-G) via a facile but efficient polymerization-enhanced ball milling method for the first time. This technique could not only efficiently introduce electron-acceptor nitrogen to enhance capacitance, but also remain a conductive platform-the π-π conjugated carbon plane for charge transportation. PPy-G based aligned nanofibers were subsequently fabricated for guided growth and electrical stimulation (ES) of RGCs. Significantly enhanced viability, neurite outgrowth and antiaging ability of RGCs were observed after ES, suggesting possibilities for regeneration of optic nerve via ES on the suitable nanoelectrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomembrane transformations are closely related to many biological processes including endo/exocytosis and the cellular response to the local physical environment. In this work, we investigated the transformation between lipid membranes and lipid vesicles/tubes modulated by the solid substrate of graphene oxide (GO) aggregates under laser irradiation. We firstly fabricate a novel type of lipid@GO composite consisting of micrometer-sized GO aggregates surrounded by lamellar lipid membranes. Upon laser irradiation, lipid protrusion occurs and leads to the formation of vesicles adsorbed on the GO aggregate surface, with an average size as 0.43 times of the radius of GO aggregate. Both the location and the dynamic formation process of vesicles can be modulated. The arising of vesicles prefers to occur at edges of the GO planes rather than on surface of individual GO sheets within the GO aggregate. Furthermore, at a reduced laser power density, the lipid protrusion mainly grows to tubes instead of vesicles. Such transformations from lipid membrane to vesicles and tubes is ascribed to the reduction of GO to reduced-GO (rGO) under laser irradiation, probably along with the release of gases leading to the deformation of lipid membrane surrounding the GO surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipases, which can be immobilized and reused for many reaction cycles, are important enzymes with many industrial applications. A key challenge in lipase immobilization for catalysis is to open the lipase lid and maintain it in an open conformation in order to expose its active site. Here we have designed "tailor-made" graphene-based nanosupports for effective lipase (QLM) immobilization through molecular engineering, which is in general a grand challenge to control biophysicochemical interactions at the nano-bio interface. It was observed that increasing hydrophobic surface increased lipase activity due to opening of the helical lid present on lipase. The molecular mechanism of lid opening revealed in molecular dynamics simulations highlights the role of hydrophobic interactions at the interface. We demonstrated that the open and active form of lipase can be achieved and tuned with an optimized activity through chemical reduction of graphene oxide. This research is a major step toward designing nanomaterials as a platform for enhancing enzyme immobilization/activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel electrochemical sensor for highly sensitive and selective detection of dopamine (DA) was developed based on a graphene quantum dots (GQDs) and Nafion composite modified glassy carbon electrode (GCE). GQDs were synthesized by a hydrothermal approach for cutting graphene sheets into GQDs and characterized by TEM, UV-vis, photoluminescence, and FT-IR spectra. The GQDs had carboxyl groups with a negative charge, which not only provided good stability, but also enabled interaction with amine functional groups in DA through electrostatic interaction to enhance the specificity of DA. The interaction and electron communication between GQDs and DA can be further strengthened via π-π stacking force. Nafion was used as an anchoring agent to increase the robustness of GQDs on the electrode surface and sensor stability and reproducibility. The GQDs-Nafion composite exhibits a good linear range of 5 nM to 100 μM and a limit of detection as low as 0.45 nM in the detection of DA. The proposed electrochemical sensor also displays good selectivity and high stability and could be used for the determination of DA in real samples with satisfactory results. The present study provides a powerful avenue for the design of an ultrasensitive detection method for clinical application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical vapor deposition (CVD) has recently been considered as the most reliable method to prepare high-quality monolayer graphene films, yet the as-grown graphene usually contains wrinkles and cracks or suffers from discontinuity. These defects can easily result in the shredding of large-sized graphene into small pieces even under a gentle disturbance. Herein, this work presents a cost-effective new method to produce high-quality GQDs by vigorous sonication of defective CVD graphene. The prepared GQDs can be easily and stably dispersed in organic solvents. Morphology and optical properties of the GQDs are investigated using a number of techniques. And we observed the as-prepared GQDs are highly homogeneous, mostly consisted of single-layered graphene, roughly round shapes less than 8 nm in a diameter, and exhibited a strong blue luminescence. Impressively, it is also confirmed that the as-obtained GQDs can act as a promising light absorption material for phototransistor with a hybrid film of GQDs and indium gallium zinc oxide (IGZO) as the channel layer. The GQD/IGZO phototransistor exhibited an appreciated photocurrent, which is 10 times larger than that of the IGZO one when exposed to 270 nm light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved method for mass production of good-quality graphene nanosheets (GNs) via ball milling pristine graphite with dry ice is presented. We also report the enhanced performance of these GNs as working electrode in lithium-ion batteries (LIBs). In this improved method, the decrease of necessary ball milling time from 48 to 24 h and the increase of Brunauer–Emmett–Teller surface area from 389.4 to 490 m2/g might be resulted from the proper mixing of stainless steel balls with different diameters and the optimization of agitation speed. The as-prepared GNs are investigated in detail using a number of techniques, such as scanning electron microscope, atomic force microscope, high-resolution transmission electron microscopy, selected area electron diffraction, X-ray diffractometer, and Fourier transform infrared spectroscopic. To demonstrate the potential applications of these GNs, the performances of the LIBs with pure Fe3O4 electrode and Fe3O4/graphene (Fe3O4/G) composite electrode were carefully evaluated. Compared to Fe3O4-LIBs, Fe3O4/G-LIBs exhibited prominently enhanced performance and a reversible specific capacity of 900 mAh g−1 after 5 cycles at 100 and 490 mAh g−1 after 5 cycles at 800 mA g−1. The improved cyclic stability and enhanced rate capability were also obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this communication, we report an electrocatalyst for full water splitting based on CoP2 nanoparticles grown on reduced graphene oxide sheets (CoP2/RGO). As a novel non-noble-metal electrocatalyst, CoP2/RGO shows an ultra-high catalytic activity in alkaline electrolyte which only requires a cell voltage of 1.56 V to attain a current density of 10 mA cm-2 for full water splitting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis focuses on use of carbon nanoparticles, namely graphene oxides for studying the effect of hydrophobicity on enzyme structure and how they it influences the enzyme activity at molecular level. It was observed that controlling the hydrophobicity of the nanoparticle is a key towards modulating enzyme activity.