200 resultados para haptic collaboration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article outlines the aspects of the research design that engage with teachers in schools and discusses some of the challenges and affordances that the relationships (between the teachers, the schools, the research partners and the researchers) experienced in the project, Literacy in the 21st Century: Learning from Computer Games. The article has a particular focus on the teachers' work as co-researchers, their descriptions of working in the project and some of the issues for teachers and researchers in working in this way. The data used for the analysis includes the teacher writing, interview data and researcher observations. The teachers who participated in the project designed and delivered curriculum using computer games in various ways including making their own games, evaluating games, analyzing game structures, and examining the culture around games and the ways in which games and other technologies are merging. Some of these curriculum units are described elsewhere in this issue (Beavis & O'Mara, 2010). This article's purpose is to follow the teachers' professional learning experiences rather than detail these curriculum designs, which the teachers will describe elsewhere. The paper concludes with our personal reflections on the affordances and challenges of working this way for us in our different roles in the research team.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introducing haptic interface to conduct microrobotic intracellular injection has many beneficial implications. In particular, the haptic device provides force feedback to the bio-operator's hand. This paper introduces a 3D particle-based model to simulate the deformation of the cell membrane and corresponding cellular forces during microrobotic cell injection. The model is based on the kinematic and dynamic of spring – damper multi particle joints considering visco-elastic fluidic properties. It simulates the indentation force feedback as well as cell visual deformation during the microinjection. The model is verified using experimental data of zebrafish embryo microinjection. The results demonstrate that the developed cell model is capable of estimating zebrafish embryo deformation and force feedback accurately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on the choice of a supervised learning algorithm and possible data preprocessing in the domain of data-driven haptic simulation. This is done through a comparison of the performance of different supervised learning techniques with and without data preprocessing. The simulation of haptic interactions with deformable objects using data-driven methods has emerged as an alternative to parametric methods. The accuracy of the simulation depends on the empirical data and the learning method. Several methods were suggested in the literature and here we provide a comparison between their performance and applicability to this domain. We selected four examples to be compared: singular learning mechanism which is artificial neural networks (ANN), attribute selection followed by ANN learning process, ensemble of multiple learning techniques, and attribute selection followed by the learning ensemble. These methods performance was compared in the domain of simulating multiple interactions with a deformable object with nonlinear material behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Haptic interaction has received increasing research interest in recent years. Currently, most commercially available haptic devices provide the user with a single point of interaction. Multi-point haptic devices present a logical progression in device design and enable the operator to experience a far wider range of haptic interactions, particularly the ability to grasp via multiple fingers. This is highly desirable for various haptically enabled applications including virtual training, telesurgery and telemanipulation. This paper presents a gripper attachment which utilises two low-cost commercially available haptic devices to facilitate multi-point haptic grasping. It provides the ability to render forces to the user's fingers independently and using Phantom Omni haptic devices offers several benefits over more complex approaches such as low-cost, reliability, and ease of programming. The workspace of the gripper attachment is considered and in order to haptically render the desired forces to the user's fingers, kinematic analysis is discussed and necessary formulations presented. The integrated multi-point haptic platform is presented and exploration of a virtual environment using CHAI 3D is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Utilizing user-centred system design and evaluation method has become an increasingly important tool to foster better usability in the field of virtual environments (VEs). In recent years, although it is still the norm that designers and developers are concerning the technological advancement and striving for designing impressive multimodal multisensory interfaces, more and more awareness are aroused among the development team that in order to produce usable and useful interfaces, it is essential to have users in mind during design and validate a new design from users' perspective. In this paper, we describe a user study carried out to validate a newly developed haptically enabled virtual training system. By taking consideration of the complexity of individual differences on human performance, adoption and acceptance of haptic and audio-visual I/O devices, we address how well users learn, perform, adapt to and perceive object assembly training. We also explore user experience and interaction with the system, and discuss how multisensory feedback affects user performance, perception and acceptance. At last, we discuss how to better design VEs that enhance users perception, their interaction and motor activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microrobotic cell injection is an area of growing research interest. Typically, operators rely on visual feedback to perceive the microscale environment and are subject to lengthy training times and low success rates. Haptic interaction offers the ability to utilise the operator’s haptic modality and to enhance operator performance. Our earlier work presented a haptically enabled system for assisting the operator with certain aspects of the cell injection task. The system aimed to enhance the operator’s controllability of the micropipette through a logical mapping between the haptic device and microrobot, as well as introducing virtual fixtures for haptic guidance. The system was also designed in such a way that given the availability of appropriate force sensors, haptic display of the cell penetration force is straightforward. This work presents our progress towards a virtual replication of the system, aimed at facilitating offline operator training. It is suggested that operators can use the virtual system to train offline and later transfer their skills to the physical system. In order to achieve the necessary representation of the cell within the virtual system, methods based on a particle-based cell model are utilised. In addition to providing the necessary visual representation, the cell model provides the ability to estimate cell penetration forces and haptically display them to the operator. Two different approaches to achieving the virtual system are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Haptic technologies allow human users to haptically interact with virtual environments. Haptics has been employed in many application domains including operator training, virtual exploration and teleoperation. Currently, most commercially available haptic devices focus on a single point of haptic interaction. While single-point haptics have been successfully employed in many applications, they remain limited to particular types of haptic interaction. Multi-point haptic devices are a logical progression and facilitate a far wider range of interactions including object grasping, multi-finger object manipulation and size discrimination. The ability to effectively achieve such interactions offers significant benefits for many applications including virtual training, telesurgery and telemanipulation. In such applications, the ability to use multi-point haptic interactions can provide far more effective user interaction as well improved perception of the virtual environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a multi-point haptic platform that employs two Phantom Omni haptic devices. A gripper attachment connects to both devices and enables multi-point haptic grasping in virtual environments. In contrast to more complex approaches, this setup benefits from low-cost, reliability, and ease of programming while being capable of independently rendering forces to each of the user’s fingertips. The ability to grasp with multiple points potentially lends itself to applications such as virtual training, telesurgery and telemanipulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virtual and physical prototypes play a significant role in the design of artifacts. This is particularly true in cross-functional team collaboration, where diverse disciplines come together to contribute to the concept, design and development of an artifact. While the role of prototyping in design and cross-functional collaboration has been widely studied independently, little is known of the role that physical prototypes play during cross-functional team collaboration. This paper reports on a study of virtual and physical prototyping strategies used by a cross-functional team comprising engineers and designers working on a concept car project. The paper provides a background of the collaborative design process and details the role of physical prototyping methods during the design of the concept car.

Relevância:

20.00% 20.00%

Publicador: