121 resultados para disc microstructure


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of grain microstructure on the age-hardening behavior is investigated on recrystallized and un-recrystallized Al-Cu-Li alloys by combining electron-backscatter-diffraction and micro-hardness mapping. The spatial heterogeneity of micro-hardness is found to be strongly dependent on the grain microstructure. Controlled experiments are carried out to change the pre-strain before artificial ageing. These experiments lead to an evaluation of the range of local strain induced by pre-stretching as a function of the grain microstructure and results in heterogeneous formation of the hardening T1 precipitates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Recent work showed an increased risk of cervical and lumbar intervertebral disc (IVD) herniations in astronauts. The European Space Agency asked the authors to advise on the underlying pathophysiology of this increased risk, to identify predisposing factors and possible interventions and to suggest research priorities. METHODS: The authors performed a narrative literature review of the possible mechanisms, and conducted a survey within the team to prioritize research and prevention approaches. RESULTS AND CONCLUSIONS: Based on literature review the most likely cause for lumbar IVD herniations was concluded to be swelling of the IVD in the unloaded condition during spaceflight. For the cervical IVDs, the knowledge base is too limited to postulate a likely mechanism or recommend approaches for prevention. Basic research on the impact of (un)loading on the cervical IVD and translational research is needed. The highest priority prevention approach for the lumbar spine was post-flight care avoiding activities involving spinal flexion, followed by passive spinal loading in spaceflight and exercises to reduce IVD hyper-hydration post-flight.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract A model for tensile twinning during the compression of rod textured magnesium is developed based on the idea that these twins nucleate at grain boundaries and that when the twin number density per grain is low these twins readily give rise to the formation of other 'interaction' twins in adjacent grains. Experimental observations of twin aspect ratios measured at a single grain size and twin number densities measured over four grain sizes were used to determine model material parameters. Using these, the model provides reasonable predictions for the observed magnitudes and trends for the following observations:Effect of grain size and stress on twin volume fraction, fractional twin length and the fraction of twin contact.Effect of grain size on the yield stress.Effect of grain size on the general shape of the stress-strain curve at low strains. A parametric study shows the model to be quite robust but that it is particularly sensitive to the value of the exponent assumed for the twin nucleation rate law. It is seen that preventing the formation of interaction twins provides an important avenue for hardening and that the flow stress is also particularly sensitive to the relaxation of the twin back stresses. The model shows the importance of taking microstructure into account when modelling twinning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AA2024-Tx is one of the most common high-strength aluminium alloys used in the aerospace industry. This article reviews current understanding of the microstructure of sheet AA2024-T3 and chronicles the emergence of new compositions for constituent particles as well as reviews older literature to understand the source of the original compositions. The review goes on to summarise older and more recent studies on corrosion of AA2024-T3, drawing attention to areas of corrosion initiation and propagation. It pays particular attention to modern approaches to corrosion characterisation as obtained through microelectrochemical techniques and physicochemical characterisation, which provide statistical assessment of factors that contribute to corrosion of AA2024. These approaches are also relevant to other alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Severe plastic deformation via equal-channel angular pressing was shown to induce characteristic ultra-fast diffusion paths in Ni (Divinski et al., 2011). The effect of heat treatment on these paths, which were found to be represented by deformation-modified general high-angle grain boundaries (GBs), is investigated by accurate radiotracer self-diffusion measurements applying the 63Ni isotope. Redistribution of free volume and segregation of residual impurities caused by the heat treatment triggers relaxation of the diffusion paths. A correlation between the GB diffusion kinetics, internal friction, microstructure evolution and microhardness changes is established and analyzed in detail. A phenomenological model of diffusion enhancement in deformation-modified GBs is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of the nutrition-countermeasures (NUC) study in Cologne, Germany in 2010, seven healthy male subjects underwent 21 days of head-down tilt bed rest and returned 153 days later to undergo a second bout of 21-day bed rest. As part of this model, we aimed to examine the recovery of the lumbar intervertebral discs and muscle cross-sectional area (CSA) after bed rest using magnetic resonance imaging and conduct a pilot study on the effects of bed rest in lumbar muscle activation, as measured by signal intensity changes in T(2)-weighted images after a standardized isometric spinal extension loading task. The changes in intervertebral disc volume, anterior and posterior disc height, and intervertebral length seen after bed rest did not return to prebed-rest values 153 days later. While recovery of muscle CSA occurred after bed rest, increases (P ≤ 0.016) in multifidus, psoas, and quadratus lumborum muscle CSA were seen 153 days after bed rest. A trend was seen for greater activation of the erector spinae and multifidus muscles in the standardized loading task after bed rest. Greater reductions of multifidus and psoas CSA muscle and greater increases in multifidus signal intensity with loading were associated with incidence of low back pain in the first 28 days after bed rest (P ≤ 0.044). The current study contributes to our understanding of the recovery of the lumbar spine after 21-day bed rest, and the main finding was that a decrease in spinal extensor muscle CSA recovers within 5 mo after bed rest but that changes in the intervertebral discs persist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Establishing the long-term repeatability of quantitative measures of lumbar intervertebral disc and spinal morphology is important for planning interventional studies. We aimed to examine this issue and to determine to what extent a smaller number of measurements per disc or vertebral level could be used to save operator time without compromising measurement precision. Twenty-one healthy male subjects were scanned at baseline and 1.5 years later. On sagittal MR-scans intervertebral disc cross-sectional area, anterior disc height, posterior disc height, intervertebral angle and intervertebral length were measured. The repeatability of the average value from all sagittal images or from 1, 3, 5 or 7 images centred at the spinous process was evaluated. Bland-Altman analysis showed all measurements to be repeatable between testing days. Intervertebral length was the most precise measurement (coefficients of variation [CVs] between 1.2% and 1.5%), followed by disc cross-sectional area (CVs between 2.9% and 3.6%). Variance component analysis showed that using 7 images, but not 1, 3 or 5 images, resulted in a similar level of measurement error as when measurements from all images were included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015, International Society of Musculoskeletal and Neuronal Interactions. All right reserved. The adaptation and re-adaptation process of the intervertebral disc (IVD) to prolonged bedrest is important for understanding IVD physiology and IVD herniations in astronauts. Little information is available on changes in IVD composition. In this study, 24 male subjects underwent 60-day bedrest and In/Out Phase magnetic resonance imaging sequences were performed to evaluate IVD shape and water signal intensity. Scanning was performed before bedrest (baseline), twice during bedrest, and three, six and twenty-four months after bedrest. Area, signal intensity, average height, and anteroposterior diameter of the lumbar L3/4 and L4/5 IVDs were measured. At the end of bedrest, disc height and area were significantly increased with no change in water signal intensity. After bedrest, we observed reduced IVD signal intensity three months (p=0.004 versus baseline), six months (p=0.003 versus baseline), but not twenty-four months (p=0.25 versus baseline) post-bedrest. At these same time points post-bedrest, IVD height and area remained increased. The reduced lumbar IVD water signal intensity in the first months after bedrest implies a reduction of glycosaminoglycans and/or free water in the IVD. Subsequently, at two years after bedrest, IVD hydration status returned towards pre-bedrest levels, suggesting a gradual, but slow, re-adaptation process of the IVD after prolonged bedrest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of Fe in Al is technologically important for commercial Al-alloys, and in recycled Al. This work explores the use of the novel rapid solidification technology, known as direct strip casting, to improve the recyclability of Al-alloys. We provide a comparison between the corrosion and microstructure of Al-Fe alloys prepared with wide-ranging cooling rates (0.1. °C/s to 500. °C/s). Rapid cooling was achieved via direct strip casting, while slow cooling was achieved using sand casting. Corrosion was studied via polarisation and immersion tests, followed by surface analysis using scanning electron microscopy and optical profilometry. It was shown that the corrosion resistance of Al-Fe alloys is improved with increased cooling rates, attributed to the reduced size and number of Fe-containing intermetallics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To better understand what kinds of sports and exercise could be beneficial for the intervertebral disc (IVD), we performed a review to synthesise the literature on IVD adaptation with loading and exercise. The state of the literature did not permit a systematic review; therefore, we performed a narrative review. The majority of the available data come from cell or whole-disc loading models and animal exercise models. However, some studies have examined the impact of specific sports on IVD degeneration in humans and acute exercise on disc size. Based on the data available in the literature, loading types that are likely beneficial to the IVD are dynamic, axial, at slow to moderate movement speeds, and of a magnitude experienced in walking and jogging. Static loading, torsional loading, flexion with compression, rapid loading, high-impact loading and explosive tasks are likely detrimental for the IVD. Reduced physical activity and disuse appear to be detrimental for the IVD. We also consider the impact of genetics and the likelihood of a ‘critical period’ for the effect of exercise in IVD development. The current review summarises the literature to increase awareness amongst exercise, rehabilitation and ergonomic professionals regarding IVD health and provides recommendations on future directions in research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium alloys are widely used in various engineering design application due to its superior material properties. The traditional manufacturing of titanium products is always difficult, time consuming, high material wastage and manufacturing costs. Selective laser melting (SLM), an additive manufacturing technology has widely gained attention due to its capability to produce near net shape components with less production time. In this technical paper,microstructure,chemical composition,tensile properties and hardness are studied for the wrought and additive manufactured SLM cylindrical bar. Microstructure,mechanical properties and hardness were studied in both the longitudinal and transverse directions of the bar to study the effect of orientation. It was found that additive manufactured bar have higher yield strength, ultimate tensile strength and hardness than the wrought bar. For both conventional and SLM test samples, the yield strength, ultimate tensile strength and hardness was found to be high in the transverse direction. The difference in the properties can be attributed to the difference in microstructure as a result of processing conditions. The tensile fracture area was quantified by careful examination of the fracture surfaces in the scanning electron microscope.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work was aimed at a detailed investigation of the orientation dependence of the microstructure characteristics in a Fe-30Ni-Nb austenitic model steel subjected to hot uniaxial compression at 1198 K (925 °C) at a strain rate of 1 s−1 to several strain levels up to 1.0. The quantification of the substructure evolution as a function of strain was performed for the stable 〈011〉 oriented grains. Other grain orientations were also investigated in detail at a strain of 0.2. The 〈110〉 oriented grains contained self-screening arrays of “microbands” (MBs) aligned with high Schmid factor {111} slip planes. The MB crystallographic alignment was largely maintained up to a strain of 1.0, which suggests that the corresponding boundaries kept continuously rearranging themselves during straining and did not follow the sample shape change. The mean MB spacing decreased and misorientation angle increased with strain towards saturation, indicating the operation of the “repolygonization” dynamic recovery mechanism. The non-〈011〉 oriented grains displayed a strong tendency to split during deformation into deformation bands having alternating orientations and being mutually rotated by large angles. The bands were separated by transition regions comprising arrays of closely spaced, extended sub-boundaries collectively accommodating large misorientations across very small distances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation is concerned with the study of effect of Double Austenitization (DA) and Single Austenitization (SA) heat treatment processes on microstructure and mechanical property of AISI D2type cold worked tool steel. To maximize hardness, tool steels are used in a quenched and tempered condition. This involves heating the material to the austenitizing temperature (~850-1100. °C), quenching at an appropriate rate to form martensite, and tempering to reduce the retained austenite content and induce toughness. The merits of DA treatment isto promote dissolution of carbides at the same time proscribe grain coarsening significantly was attempted in D2 tool steel. The study has found that DA treatment has induced high hardness with insignificant growth in grains. The increase in hardness is attributed to increase in carbon content in matrix due to dissolution of carbides; whereas finer grains due to role of inclusions.