113 resultados para convective upwinding scheme


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a partially distributed functional observer scheme for a class of interconnected linear systems with very strong non-instantaneous subsystems interaction and with time delays in the local states and in the transmission of output information from the remote subsystems. A set of easily verifiable existence conditions is established and upon its satisfaction, simple distributed observers are designed using a straightforward design procedure. Simulation results of a numerical example are given to substantiate the feasibility of the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method for designing residual generators using minimum-order functional observers to detect actuator and component faults in time-delay systems. Existence conditions of the residual generators and functional observers are first derived, and then based on a parametric approach to the solution of a generalized Sylvester matrix equation, we develop systematic procedures for designing minimum-order functional observers to detect faults in the system. The advantages of having minimum-order observers are obvious from the economical and practical points of view as cost saving and simplicity can be achieved, particularly when dealing with high-order complex systems. Extensive numerical examples are given to illustrate the proposed fault detection scheme. In all the numerical examples, we design minimum-order residual generators and functional observers to detect faults in the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite significant advancements in wireless sensor networks (WSNs), energy conservation in the networks remains one of the most important research challenges. One approach commonly used to prolong the network lifetime is through aggregating data at the cluster heads (CHs). However, there is possibility that the CHs may fail and function incorrectly due to a number of reasons such as power instability. During the failure, the CHs are unable to collect and transfer data correctly. This affects the performance of the WSN. Early detection of failure of CHs will reduce the data loss and provide possible minimal recovery efforts. This paper proposes a self-configurable clustering mechanism to detect the disordered CHs and replace them with other nodes. Simulation results verify the effectiveness of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2001-2012 IEEE. Sensing coverage is a fundamental design problem in wireless sensor networks (WSNs). This is because there is always a possibility that the sensor nodes may function incorrectly due to a number of reasons, such as failure, power, or noise instability, which negatively influences the coverage of the WSNs. In order to address this problem, we propose a fuzzy-based self-healing coverage scheme for randomly deployed mobile sensor nodes. The proposed scheme determines the uncovered sensing areas and then select the best mobile nodes to be moved to minimize the coverage hole. In addition, it distributes the sensor nodes uniformly considering Euclidean distance and coverage redundancy among the mobile nodes. We have performed an extensive performance analysis of the proposed scheme. The results of the experiment show that the proposed scheme outperforms the existing approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an agent-based distributed control scheme is presented to control single-phase parallel inverters in solar photovoltaic (PV) systems connected to microgrids. A communication assisted multi-agent framework is developed within microgrids where agents perform their tasks in a distributed manner with an aim of stabilizing load voltage and current under normal and faulted conditions through the asymptotic tracking of the reference current signal. The distributed agent-based control scheme requires information from the neighboring agents through communication network to decide control actions. The proposed control scheme utilizes Ziegler-Nichols (Z-N) tuning approach to design proportional integral (PI) controllers for controlling inverters within the multi-agent system (MAS). A microgrid with parallel inverter-connected solar PV systems is considered for simulations under normal and faulted conditions where results show the excellency of the proposed agent-based scheme in comparison to the conventional scheme without MAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identity-based encryption (IBE) allows one party to send ciphered messages to another using an arbitrary identity string as an encryption key. Since IBE does not require prior generation and distribution of keys, it greatly simplifies key management in public-key cryptography. According to the Menezes-Okamoto-Vanstone (MOV) reduction theory, the IBE scheme based on bilinear map loses the high efficiency of elliptic curve because of the requirement of large security parameters. Therefore, it is important to build a provably secure IBE scheme without bilinear map. To this end, this paper proposes an improved IBE scheme that is different from the previous schemes because this new scheme does not use symmetric encryption algorithm. Furthermore, it can be proven to be secure against adaptively chosen identity and chosen plaintext attacks in the standard model. Elaborated security and performance analysis demonstrate that this new scheme outperforms the previous ones in terms of the time complexity for encryption and decryption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the cloud, data is usually stored in ciphertext for security. Attribute-based encryption (ABE) is a popular solution for allowing legal data users to access encrypted data, but it has high overhead and is vulnerable to data leakage. The authors propose an anonymous authorization credential and Lagrange interpolation polynomial-based access control scheme in which an access privilege and one secret share are applied for reconstructing the user's decryption key. Because the credential is anonymously bounded with its owner, only the legal authorized user can access and decrypt the encrypted data without leaking any private information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a distributed multi-agent scheme is presented for reactive power management with renewable energy sources (RESs). The multi-agent system (MAS) framework is developed for distribution systems to improve the stability which is mostly dominated by voltage and the agents in this framework coordinate among themselves using online information and energy flow. In this paper, the agents basically perform two tasks- reactive power estimation and necessary control actions. The topology of distribution network is used to estimate the required reactive power for maintaining voltage stability where distributed static synchronous compensators (DSTATCOMs) are used to supply this reactive power. The DSTATCOM is controlled by using a linear quadratic regulator (LQR) controller within the agent framework. The proposed scheme is further compared with the conventional approach to validate the simulation results.