107 resultados para continuous label


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rotavirus replication occurs in vivo in intestinal epithelial cells. Cell lines fully permissive to rotavirus include kidney epithelial (MA104), colonic (Caco-2) and hepatic (HepG2) types. Previously, it has been shown that cellular integrins α2β1, α4β1 and αXβ2 are involved in rotavirus cell entry. As receptor usage is a major determinant of virus tropism, the levels of cell surface expression of these integrins have now been investigated by flow cytometry on cell lines of human (Caco-2, HepG2, RD, K562) and monkey (MA104, COS-7) origin in relation to cellular susceptibility to infection with monkey and human rotaviruses. Cells supporting any replication of human rotaviruses (RD, HepG2, Caco-2, COS-7 and MA104) expressed α2β1 and (when tested) αXβ2, whereas the non-permissive K562 cells did not express α2β1, α4β1 or αXβ2. Only RD cells expressed α4β1. Although SA11 grew to higher titres in RD, HepG2, Caco-2, COS-7 and MA104 cells, this virus still replicated at a low level in K562 cells. In all cell lines tested, SA11 replicated to higher titres than did human strains, consistent with the ability of SA11 to use sialic acids as alternative receptors. Levels of cell surface α2 integrin correlated with levels of rotavirus growth. The α2 integrin relative linear median fluorescence intensity on K562, RD, COS-7, MA104 and Caco-2 cells correlated linearly with the titre of SA11 produced in these cells at 20 h after infection at a multiplicity of 0·1, and the data best fitted a sigmoidal dose–response curve (r2=1·00, P=0·005). Thus, growth of rotaviruses in these cell lines correlates with their surface expression of α2β1 integrin and is consistent with their expression of αXβ2 and α4β1 integrins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a spinning metal wire collector was employed to continuously collect polyacrylonitrile (PAN) nanofibers produced by a disc fiber generator and coil them around a polyethylene terephthalate (PET) yarn. The obtained composite yarns exhibited a core/shell structure (PET yarn/PAN nanofibers) with nanofibers orderly arranged on the surface of the PET yarn. The electric field analysis showed that the position of metal wire had insignificant effect on the formed electric field and high intensity electric field was formed at the disc circumferential area, which provided a constant electric field for the production of uniform nanofibers. The spinning solution, spinning speed of metal wire, and winding speed were found to play an important role in producing good quality nanofiber yarns, in terms of morphology, strength, and productivity. Pure nanofiber yarns were obtained after dissolving the core yarns in a proper solvent. This method has shown potential for the mass production of nanofiber yarns for industrial applications.