145 resultados para bake hardening


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A key requirement of modern steels – the combination of high strength and high deformability – can best be achieved by enabling a local adaptation of the microstructure during deformation. A local hardening is most efficiently obtained by a modification of the stacking sequence of atomic layers, resulting in the formation of twins or martensite. Combining ab initio calculations with in situ transmission electron microscopy, we show that the ability of a material to incorporate such stacking faults depends on its overall chemical composition and, importantly, the local composition near the defect, which is controlled by nanodiffusion. Specifically, the role of carbon for the stacking fault energy in high-Mn steels is investigated. Consequences for the long-term mechanical properties and the characterisation of these materials are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanical behaviour of Fe-18Mn-0.6C-1Al (wt%) TWIP steel was modelled in the temperature range from room temperature to 400°C. The proposed constitutive model was based on the Kocks-Mecking-Estrin (KME) model. The model parameters were determined using extensive experimental measurements of the physical parameters such as the dislocation mean free path and the volume fraction of twinned grains. More than 100 grains with a total area of ~300μm2 were examined at different strain levels over the entire stress-strain curve. Uniaxial tensile deformation of the TWIP steel was modelled for different deformation temperatures using a modelling approach which considers two distinct populations of grains: twinned and twin-free ones. A key point of the work was a meticulous experimental determination of the evolution of the volume fraction of twinned grains during uniaxial tensile deformation. This information was implemented in a phase-mixture model that yielded a very good agreement with the experimental tensile behaviour for the tested range of deformation temperatures. © 2014 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

'Heterogeneous twinning' is defined as plastic deformation due to the formation and progress of twins resulting in surface wrinkles on the deforming part when the initial grain size is relatively large compared to the typical size of the part. In the case of a Twinning Induced Plasticity (TWIP) steel with an initial grain size of ~160. m, the heterogeneous twinning generated visible wrinkles, an orange peel effect, under medium uni-axial strains. The heterogeneous twinning did not occur in the material subjected to high shear strains. The complications resulting from this phenomenon on strain hardening characterization of the TWIP steels using two commonly used mechanical tests, tensile and torsion are discussed along with some experimental aspects of heterogeneous twinning. © 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 This report summarizes material testing on three metals used in the Numisheet 2014 Benchmark Study, a DP 600 steel sheet, a TRIP 780 steel sheet, and an aluminum alloy 5182-O sheet. The tests include r value, yield stress, and hardening in uniaxial tension at 15 degree increments of the loading axis in the plane of the sheet, r value, yield stress, and hardening in equal biaxial tension, and forming limit curves for all three metals. In addition, cyclic tension-compression tests along the rolling direction are reported for the DP 600 and aluminum alloy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unloading behavior was compared for three different steel grades: a dual-phase steel, a transformation-induced plasticity steel, and a twinning-induced plasticity steel. Steels that harden by phase transformation or deformation twinning exhibited a smaller component of microplastic strain during unloading and a smaller reduction in the chord modulus compared to the conventional hardening steel. As a result, unloading is closer to pure elastic unloading when the TRIP effect or TWIP effect is active.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An empirical relationship between the hardness and uniform elongation of non-Austenitic hypoeutectoid steels has been developed. This new hardness-elongation relationship was combined with previously developed correlations of hardness and strength (yield and ultimate tensile strength) to predict the stressstrain flow curve from a single hardness test. The current study considers both power law hardening behavior and exponential hardening behavior. Reasonable agreement was observed between the experimental and predicted flow curves of a high strength, low alloy steel. Additionally, an empirical correlation of the flow strength at instability with hardness is provided. © ASM International.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three different heat treatment processes have been proposed as a fundamental method to produce three kinds of TRIP-aided steels with polygonal ferritic matrix (F-TRIP), bainitic matrix (B-TRIP) and martensitic matrix (M-TRIP) in a newly designed low alloy carbon steel. By means of dilatometry study and detailed characterization, the relationships among transformation, microstructure and the resulting mechanical behavior were compared and analyzed for the three cases. The work hardening of the samples was evaluated by calculating the instantaneous n value as a function of strain. The M-TRIP sample exhibits the highest strength with the highest work hardening rate at low strains and subsequent rapid descending at high strains. In contrast, the B-TRIP sample has relatively high continuously constant work hardening behavior over strain levels greater than 0.067. The difference in work hardening behavior corresponds directly to the rate of the retained austenite-martensitic transformation during straining, which can be attributed to the carbon content, the morphology of the retained austenite and the matrix microstructure in the respective TRIP-aided samples. © 2014 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deformation behaviour of two single phase binary alloys, Mg-5Y and Mg-10Y, have been examined. In compression, two twin types were observed, the common {101¯2} twin as well as the less common {112¯1} extension twin. It is shown that the {112¯1} twin is much less sensitive to solute concentration than the {101¯2} twin, and it is suggested that the simple atomic shuffle of the {112¯1} twin reduces the solute strengthening imparted by Y additions. The common {101¯2} twin showed significant hardening as a result of alloying with Y. An analysis of solute behaviour has indicated that of the four chemical parameters investigated, i.e. atomic size, shear modulus, electronegativity and solute distribution, it appears to be the larger atomic radius of Y compared to Mg that increases the stress required to activate the {101¯2} twin. It is suggested that the large atomic radius inhibits the atomic shuffling process which accompanies the twinning shear in this twin type.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In situ neutron diffraction of two binary Mg alloys, Mg-0.5 wt.% Y and Mg-2.2 wt.% Y have been carried out in compression. The experimental data has been modelled using the elastoplastic self-consistent methodology in order to determine the critical resolved shear stress for basal slip, second-order 〈c + 〉 pyramidal slip and {101̄2} twinning. It was found that the addition of Y strengthens all three of the deformation modes examined. However, increasing the Y concentration from 0.5% to 2.2% showed no additional hardening in the basal slip and {101̄2} twinning modes, indicating that solute strengthening of these deformation modes is already exhausted by a concentration of 0.5% Y. Second-order pyramidal slip showed additional solute hardening at the higher concentration. © 2014 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The severe plastic deformation of a Twinning Induced Plasticity (TWIP), 0.61C-22.3Mn-0.19Si-0.14Ni-0.27Cr (wt. %) steel by Equal Channel Angular Pressing (ECAP) at elevated temperatures was used to study the deformation mechanism as a function of accumulated strain and processing parameters. The relationship between the microstructures after different deformation schedules of ECAP at the temperatures of 200, 300 and 400oC, strain hardening behavior and mechanical properties was studied. The best balance between strength and ductility (1702 MPa and 24%) was found after 2 passes at 400oC and 300oC of ECAP. It was due to the formation of deformation microbands and twins in the microstructure. The twinning was observed after all deformation schedules except after 1 pass at 400oC. The important finding was the formation of twins in the ultrafine grains. Moreover, the stacking faults were observed in the subgrains with the size of 50nm. It is also worth mentioning the formation of nano- twins within the micro-twins at the same time. It was found that the deformation schedule affects the dislocation substructure with formation of deformation bands, cells, subgrains, two variants of twins that, in turn, influence the strain-hardening behavior and mechanical properties. Keywords: Twinning Induced Plasticity steels; Equal Channel Angular Pressing; mechanical properties; transmission electron microscopy; micro/nano twins; dislocation substructure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The roll forming process is increasingly used in the automotive industry for the manufacture of structural and crash components from Ultra High Strength Steel (UHSS). Due to the high strength of UHSS (<1GPa) even small and commonly observed material property variations from coil to coil can result in significant changes in material yield and through that affect the final shape of the roll formed component. This requires the re-adjustment of tooling to compensate for shape defects and maintain part geometry resulting in costly downtimes of equipment. This paper presents a first step towards an in-line shape compensation method that based on the monitoring of roll load and torque allows for the estimation of shape defects and the subsequent re-adjustment of tooling for compensation. For this the effect of material property variation on common shape defects observed in the roll forming process as well as measurable process parameters such as roll load and torque needs to be understood. The effect of yield strength and material hardening on roll load and torque as well as longitudinal bow is investigated via experimental trials and numerical analysis. A regression analysis combined with Analysis of Variance (ANOVA) techniques is employed to establish the relationships between the process and material parameters and to determine their percentage influence on longitudinal bow, roll load and torque. The study will show that the level of longitudinal bow, one of the major shape defects observed in roll forming, can be estimated by variations in roll load and torque.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an optimized fabrication method for developing a freestanding bridge for RF MEMS switches. In this method, the sacrificial layer is patterned and hard baked a 220°C for 3min, after filling the gap between the slots of the coplanar waveguide. Measurement results by AFM and SEM demonstrate that this technique significantly improves the planarity of the sacrificial layer, reducing the uneven surface to less than 20nm, and the homogeneity of the Aluminum thickness across the bridge. Moreover, a mixture of O2, Ar and CF4 was used and optimized for dry releasing of the bridge. A large membrane (200×100μm2) was released without any surface bending. Therefore, this method not only simplifies the fabrication process, but also improves the surface flatness and edge smoothness of the bridge. This fabrication method is fully compatible with standard silicon IC technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an investigation of the effect of deformation twinning on the visco-plastic response and stress localization in a low stacking fault energy twinning-induced plasticity (TWIP) steel under uniaxial tension loading. The three-dimensional full field response was simulated using the fast Fourier transform method. The initial microstructure was obtained from a three dimensional serial sectionusing electron backscatter diffraction. Twin volume fraction evolution upon strain was measured so the hardening parameters of the simple Voce model could be identified to fit both the stress-strain behavior and twinning activity. General trends of texture evolution were acceptably predicted including the typical sharpening and balance between the 1 1 1 fiber and the 1 0 0 fiber. Twinning was found to nucleate preferentially at grain boundaries although the predominant twin reorientation scheme did not allow spatial propagation to be captured. Hot spots in stress correlated with the boundaries of twinned voxel domains, which either impeded or enhanced twinning based on which deformation modes were active locally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of the partial replacement of Si with Al and the addition of P on the microstructure and mechanical properties of experimental TRIP-aided steels subjected to different thermo-mechanical cycles were studied. Based on the available literature and thermodynamics-based calculations, three steels with different compositions were designed to obtain optimum results from a relatively low number of experiments. Different combinations of microstructure were developed through three different kinds of thermo-mechanical-controlled processing (TMCP) routes, and the corresponding tensile properties were evaluated. The results indicated that partial replacement of Si with Al improved the strength-ductility balance along with providing an improved variation in the incremental change in the strain-hardening exponent. However, the impact of the P addition was found to depend more on the final microstructure obtained by the different TMCP cycles. It has also been shown that an increase in the volume fraction of the retained austenite ($$ V_{{\gamma_{\text{ret}} }} $$Vγret) or its carbon content ($$ C_{{\gamma_{\text{ret}} }} $$Cγret) resulted in an improved strength-ductility balance, which can be attributed to better exploitation of the TRIP effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low cycle fatigue (LCF) behaviour of a dual phase (DP) steel with different martensite volume fractions has been investigated, with particular focus on fatigue life, cyclic hardening/softening behaviour and microstructural evolution. DP steels with martensite volume fractions between 13% and 88% were produced and their monotonic and cyclic deformation behaviours evaluated. The LCF life has been examined in depth and compared with published literature. It has been concluded that, once normalised for plastic strain amplitude, the fatigue life was found to be significantly reduced by an increase in the martensite volume fraction. All alloys were observed to show some initial cyclic hardening followed by cyclic softening. Clear sub-cell formation occurred in ferrite grains irrespective of the martensite volume fraction, and it is suggested that this cell formation and martensite softening are responsible for the cyclic softening behaviour.