145 resultados para UFG titanium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics simulation was employed to study the atomic interactions in titanium carbides and iron matrix containing carbon and titanium, which are significant for understanding the formation of titanium carbide cluster during precipitate process. The atoms trajectory and diffusion coefficients of carbon in titanium carbide were analyzed to provide a vacancy-exchanging mechanism and clarify the carbon concentration dependence of carbon diffusion in titanium carbide. The dependence of the formation of titanium carbide cluster in iron matrix on carbon was determined from the study of atoms diffusivity, cluster formation and formation energy of titanium carbide cluster. The simulation results provided insight into the carbon diffusion process and improved the understanding of the formation of titanium carbide cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growing interest in developing devices that can be implantable or wearable requires the identification of suitable materials for the components of these devices. Electrochemical supercapacitors are not the exception in this trend, and identifying electrode materials that can be not only suitable for the capacitive device but also biocompatible at the same time is important. In addition, it would be advantageous if physiological fluids could be used instead of more conventional (and often corrosive) electrolytes for implantable or wearable supercapacitors. In this study, we assess the biocompatibility of films of anodized TiO2 nanotubes subjected to the subsequent annealing in Ar atmosphere and evaluate their capacitive performance in a physiological liquid. A biocompatibility test tracking cell proliferation on TiO2 nanotube electrodes and electrochemical tests in 0.01 M phosphate-buffered saline solution are discussed. It is expected that the study will stimulate further developments in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium and its alloys are excellent candidates for biomedical implant. However, they exhibit relatively poor tribological properties. In this study, a two-step treatment including surface mechanical attrition treatment (SMAT) combined with thermal oxidation process has been developed to improve the tribological properties and biocompatibility of Ti. Ti after two-step treatment shows excellent wear-resistance and biocompatibility among all Ti samples, which can be ascribed to the highest surface energy, well crystallinity of rutile layer on its surface. Overall, the two-step treatment is a prospective method to produce excellent biomedical Ti materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium alloy (Ti-6Al-4V) has a wide range of application in various fields of engineering. Titanium is mainly used to manufacture aerospace components like landing gear, fuselage, wings, engines etc. and biomedical components like hip joint, knee joint, dental implants etc. Titanium has outstanding material properties such as corrosion resistance, fatigue strength, tensile strength and a very good biocompatibility which makes this material very alluring for biomedical applications. Contrary, the machinability of the material is problematic because of the phase transformations and thus, titanium alloy is a challenge for machining operation. This research is a comparative analysis between the implants manufactured by traditional method of casting and machining. The femoral stem of the hip joint replacement is designed and the component is machined using a five-axis CNC machine.The machined component was subjected to surface roughness testing, tensile testing and bulk hardness testing. The values were compared with the values of titanium implants manufactured by casting. © (2014) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Qi developed a novel thermomechanical processing route for the grain refinement of titanium alloys. This leads to a well-balanced superior mechanical property, which is vital for modern air transport. The outcomes of this project are prospective to enhance titanium application and the long-term viability of Australian resources and manufacturing industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research, strontium (Sr) and surface modification were used to improve the
biocompatibility of titanium (Ti) based implant materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study contrasts the extent to which laboratory and industrial scale variants of equal channel angular pressing (ECAP) impart desirable microstructures and mechanical properties in Grades 2 and 4 titanium. Industrial-scale ECAP-Conform (ECAP-C) with post-ECAP thermo-mechanical processing (TMP) enhanced performance levels beyond those achieved with the same material processed in the laboratory by ECAP only. ECAP-C processed titanium demonstrated exceptional tensile properties and fatigue strength, superior even to conventional Ti-6Al-4V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface nanotopography and architecture of medical implant devices are important factors that can control the extent of bacterial attachment. The ability to prevent bacterial attachment substantially reduces the possibility of a patient receiving an implant contracting an implant-borne infection. We now demonstrated that two bacterial strains, Staphylococcus aureus and Pseudomonas aeruginosa, exhibited different attachment affinities towards two types of molecularly smooth titanium surfaces each possessing a different nanoarchitecture. It was found that the attachment of S. aureus cells was not restricted on surfaces that had an average roughness (S a) less than 0.5 nm. In contrast, P. aeruginosa cells were found to be unable to colonise surfaces possessing an average roughness below 1 nm, unless sharp nanoprotrusions of approximately 20 nm in size and spaced 35.0 nm apart were present. It is postulated that the enhanced attachment of P. aeruginosa onto the surfaces possessing these nanoprotrusions was facilitated by the ability of the cell membrane to stretch over the tips of the nanoprotrusions as confirmed through computer simulation, together with a concomitant increase in the level of extracellular polymeric substance (EPS) being produced by the bacterial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research will definitely give guidelines to industries associated with titanium slot machining.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An equiaxed ultrafine-grained (UFG) microstructure was successfully produced in a Ti-6Al-4V alloy with an average grain size of 110-230. nm through symmetric and asymmetric warm rolling of a martensitic starting microstructure. The UFG material displayed a combination of ultrahigh strength and ductility at room temperature. Compared with the conventional symmetric rolling, the asymmetric rolling process led to a more pronounced effect of microstructure refinement and a higher tensile ductility. The optimum mechanical response was obtained though the asymmetric rolling at 70% reduction, offering an ultimate tensile strength of 1365. MPa and a total elongation of ~23%. Apart from the magnitude of grain refinement, the inclination of basal texture component from the normal towards the rolling direction during asymmetric rolling and possible strain induced β to martensite transformation may concurrently contribute to a remarkable tensile strength-ductility balance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti and Ti-based alloys have unique properties such as high strength, low density and excellent corrosion resistance. These properties are essential for the manufacture of lightweight and high strength components for biomedical applications. In this paper, Ti properties such as metallurgy, mechanical properties, surface modification, corrosion resistance, biocompatibility and osseointegration in biomedical applications have been discussed. This paper also analyses the advantages and disadvantages of various Ti manufacturing processes for biomedical applications such as casting, powder metallurgy, cold and hot working, machining, laser engineering net shaping (LEN), superplastic forming, forging and ring rolling. The contributions of this research are twofold, firstly scrutinizing the behaviour of Ti and Ti-based alloys in-vivo and in-vitro experiments in biomedical applications to determine the factors leading to failure, and secondly strategies to achieve desired properties essential to improving the quality of patient outcomes after receiving surgical implants. Future research will be directed toward manufacturing of Ti for medical applications by improving the production process, for example using optimal design approaches in additive manufacturing and investigating alloys containing other materials in order to obtain better medical and mechanical characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article correlates laboratory-based understanding in machining of titanium alloys with the industry based outputs and finds possible solutions to improve machining efficiency of titanium alloy Ti-6Al-4V. The machining outputs are explained based on different aspects of chip formation mechanism and practical issues faced by industries during titanium machining. This study also analyzed and linked the methods that effectively improve the machinability of titanium alloys. It is found that the deformation mechanism during machining of titanium alloys is complex and causes basic challenges, such as sawtooth chips, high temperature, high stress on cutting tool, high tool wear and undercut parts. These challenges are correlated and affected by each other. Sawtooth chips cause variation in cutting forces which results in high cyclic stress on cutting tools. On the other hand, low thermal conductivity of titanium alloy causes high temperature. These cause a favorable environment for high tool wear. Thus, improvements in machining titanium alloy depend mainly on overcoming the complexities associated with the inherent properties of this alloy. Vibration analysis kit, high pressure coolant, cryogenic cooling, thermally enhanced machining, hybrid machining and, use of high conductive cutting tool and tool holders improve the machinability of titanium alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is part of a general effort to demonstrate the effect of the bulk microstructure of titanium as a model bone implant material on viability of osteoblasts (bone-forming cells). The objective of this work was to study the proliferation of preosteoblastic MC3T3-E1 cells extracted from mice embryos on commercial purity titanium substrates. Two distinct states of titanium were considered: as-received material with an average grain size of 4.5 microm and that processed by equal channel angular pressing (ECAP), with an average grain size of 200 nm. We report the first results of an in vitro study into the effect of this extreme grain refinement on viability and proliferation of MC3T3-E1 cells. By means of MTT assays it was demonstrated that ECAP processing of titanium enhances MC3T3-E1 culture proliferation in a spectacular way. This finding suggests that bone implants made from ECAP processed titanium may promote bone tissue growth.