118 resultados para Turtle Caretta-caretta


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some marine species have been shown to target foraging at particular hotspots of high prey abundance. However, we show here that in the year after a nesting season, female leatherback turtles (Dermochelys coriacea) in the Atlantic generally spend relatively little time in fixed hotspots, especially those with a surface signature revealed in satellite imagery, but rather tend to have a pattern of near continuous traveling. Associated with this traveling, distinct changes in dive behavior indicate that turtles constantly fine tune their foraging behavior and diel activity patterns in association with local conditions. Switches between nocturnal vs. diurnal activity are rare in the animal kingdom but may be essential for survival on a diet of gelatinous zooplankton where patches of high prey availability are rare. These results indicate that in their first year after nesting, leatherback turtles do not fit the general model of migration where responses to resources are suppressed during transit. However, their behavior may be different in their sabbatical years away from nesting beaches. Our results highlight the importance of whole-ocean fishing gear regulations to minimize turtle bycatch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Island archipelagos of the tropical coast of central Queensland include the most distant offshore islands used by Aboriginal Australians. Excavations on Collins, Otterbourne and High Peak Islands, located up to 40 km from the mainland, reveal evidence of offshore voyaging and marine specialisation in the Shoalwater Bay region for at least 5200 years. A time lag of up to 3000 years between island formation and systematic island use may reflect delayed development of key marine resources. Expansion of island use commencing around 3000–3500 years ago is linked to population increases sustained by synchronous increases in marine resources. Occupational hiatuses variously between 1000 and 3000 years ago are associated with increased ENSO activity. Intensified island use within the past 1000 years is primarily a social phenomenon associated with continuing demographic pressures and the development of more coastally and marine-focused mainland groups, with settlement patterns increasingly encompassing adjacent islands. The viability of risky offshore canoe voyaging was underwritten by two key high-return subsistence pursuits – hunting green turtles and collecting turtle eggs. In addition to subsistence and quartz quarrying, a key motivation for island visitation may have been socially restricted (e.g. ceremonial) practices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The establishment of protected corridors linking the breeding and foraging grounds of many migratory species remains deficient, particularly in the world's oceans. For example, Australia has recently established a network of Commonwealth Marine Reserves, supplementing existing State reserves, to protect a wide range of resident and migratory marine species; however, the routes used by mobile species to access these sites are often unknown. The flatback marine turtle (Natator depressus) is endemic to the continental shelf of Australia, yet information is not available about how this species uses the marine area. We used a geospatial approach to delineate a coastal corridor from 73 adult female flatback postnesting migratory tracks from four rookeries along the north-west coast of Australia. A core corridor of 1,150 km length and 30,800 km2 area was defined, of which 52 % fell within 11 reserves, leaving 48 % (of equivalent size to several Commonwealth Reserves) of the corridor outside of the reserve network. Despite limited data being available for other marine wildlife in this region, humpback whale migratory tracks overlapped with 96 % of the core corridor, while the tracks of three other species overlapped by 5-10 % (blue whales, olive ridley turtles, whale sharks). The overlap in the distribution ranges of at least 20 other marine vertebrates (dugong, cetaceans, marine turtles, sea snakes, crocodiles, sharks) with the corridor also imply potential use. In conclusion, this study provides valuable information towards proposing new locations requiring protection, as well as identifying high-priority network linkages between existing marine protected areas. © 2014 Springer-Verlag Berlin Heidelberg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The movements of some long-distance migrants are driven by innate compass headings that they follow on their first migrations (e.g., some birds and insects), while the movements of other first-time migrants are learned by following more experienced conspecifics (e.g., baleen whales). However, the overall roles of innate, learned, and social behaviors in driving migration goals in many taxa are poorly understood. To look for evidence of whether migration routes are innate or learned for sea turtles, here for 42 sites around the world we compare the migration routes of >400 satellite-tracked adults of multiple species of sea turtle with ∼45 000 Lagrangian hatchling turtle drift scenarios. In so doing, we show that the migration routes of adult turtles are strongly related to hatchling drift patterns, implying that adult migration goals are learned through their past experiences dispersing with ocean currents. The diverse migration destinations of adults consistently reflected the diversity in sites they would have encountered as drifting hatchlings. Our findings reveal how a simple mechanism, juvenile passive drift, can explain the ontogeny of some of the longest migrations in the animal kingdom and ensure that adults find suitable foraging sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large marine protected areas (MPAs), each hundreds of thousands of square kilometers, have been set up by governments around the world over the last decade as part of efforts to reduce ocean biodiversity declines, yet their efficacy is hotly debated. The Chagos Archipelago MPA (640,000 km2) (Indian Ocean) lies at the heart of this debate. We conducted the first satellite tracking of a migratory species, the green turtle (Chelonia mydas), within the MPA and assessed the species' use of protected versus unprotected areas. We developed an approach to estimate length of residence within the MPA that may have utility across migratory taxa including tuna and sharks. We recorded the longest ever published migration for an adult cheloniid turtle (3979 km). Seven of 8 tracked individuals migrated to distant foraging grounds, often ≥1000 km outside the MPA. One turtle traveled to foraging grounds within the MPA. Thus, networks of small MPAs, developed synergistically with larger MPAs, may increase the amount of time migrating species spend within protected areas. The MPA will protect turtles during the breeding season and will protect some turtles on their foraging grounds within the MPA and others during the first part of their long-distance postbreeding oceanic migrations. International cooperation will be needed to develop the network of small MPAs needed to supplement the Chagos Archipelago MPA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide is one of the most important signalling molecules involved in the regulation of physiological function. It first came to prominence when it was discovered that the vascular endothelium of mammals synthesises and releases nitric oxide (NO) to mediate a potent vasodilation. Subsequently, it was shown that NO is synthesised in the endothelium by a specific isoform of nitric oxide synthase (NOS) called NOS3. Following this discovery, it was assumed that an endothelial NO/NOS3 system would be present in all vertebrate blood vessels. This review will discuss the latest genomic, anatomical and physiological evidence which demonstrates that an endothelial NO/NOS3 signalling is not ubiquitous in non-mammalian vertebrates, and that there have been key evolutionary steps that have led to the endothelial NO signalling system being a regulatory system found only in reptiles, birds and mammals. Furthermore, the emerging role of nitrite as an endocrine source of NO for vascular regulation is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over recent years, a major breakthrough in marine animal tracking has occurred with the advent of Fastloc-GPS that provides highly accurate location data even for animals that only surface briefly such as sea turtles, marine mammals and penguins. We assessed the accuracy of Fastloc-GPS locations using fixed trials of tags in which >45 000 locations were obtained. Procedures for determining the speed of travel and heading were developed by simulating tracks and then adding Fastloc-GPS location errors. The levels of detail achievable for speed and heading estimates were illustrated by using empirical Fastloc-GPS data for a green turtle (Chelonia mydas, Linnaeus, 1758) travelling over 3000 km across the Indian Ocean. The accuracy of Fastloc-GPS locations varied as a function of the number of GPS satellites used in the location calculation. For example, when Fastloc-GPS locations were calculated using 4 GPS satellites, 50% of locations were within 36 m and 95% within 724 m of the true position. These values improved to 18 and 70 m, respectively, when 6 satellites were used. Simulations indicated that for animals travelling around 2·5 km h-1 (e.g. turtles, penguins and seals) and depending on the number of satellites used in the location calculation, robust speed and heading estimates would usually be obtained for locations only 1-6 h apart. Fastloc-GPS accuracy is several orders of magnitude better that conventional Argos tracking or light-based geolocation and consequently will allow new insights into small-scale movement patterns of marine animals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 The implications of climate change for global biodiversity may be profound with those species with little capacity for adaptation being thought to be particularly vulnerable to warming. A classic case of groups for concern are those animals exhibiting temperature-dependent sex-determination (TSD), such as sea turtles, where climate warming may produce single sex populations and hence extinction. We show that, globally, female biased hatchling sex ratios dominate sea turtle populations (exceeding 3:1 in >50% records), which, at-a-glance, reiterates concerns for extinction. However, we also demonstrate that more frequent breeding by males, empirically shown by satellite tracking 23 individuals and supported by a generalized bio-energetic life history model, generates more balanced operational sex ratios (OSRs). Hence, concerns of increasingly skewed hatchling sex ratios and reduced population viability are less acute than previously thought for sea turtles. In fact, in some scenarios skewed hatchling sex ratios in groups with TSD may be adaptive to ensure optimum OSRs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 200-year time series of incubation temperatures and primary sex ratios for green (Chelonia mydas), hawksbill (Eretmochelys imbricata) and leatherback (Dermochelys coriacea) sea turtles nesting in St. Eustatius (North East Caribbean) was created by combining sand temperature measurements with historical and current environmental data and climate projections. Rainfall and spring tides were important because they cooled the sand and lowered incubation temperatures. Mean annual sand temperatures are currently 31.0. °C (SD. =. 1.6) at the nesting beach but show seasonality, with lower temperatures (29.1-29.6. °C) during January-March and warmer temperatures (31.9-33.3. °C) in June-August. Results suggest that all three species have had female-biased hatchling production for the past decades with less than 15.5%, 36.0%, and 23.7% males produced every year for greens, hawksbills and leatherbacks respectively since the late nineteenth century. Global warming will exacerbate this female-skew. For example, projections indicate that only 2.4% of green turtle hatchlings will be males by 2030, 1.0% by 2060, and 0.4% by 2090. On the other hand, future changes to nesting phenology have the potential to mitigate the extent of feminisation. In the absence of such phenological changes, management strategies to artificially lower incubation temperatures by shading nests or relocating nest clutches to deeper depths may be the only way to prevent the localised extinction of these turtle populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sand temperatures at nest depths and implications for hatchling sex ratios of hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) nesting in the Chagos Archipelago, Indian Ocean are reported and compared to similar measurements at rookeries in the Atlantic and Caribbean. During 2012-2014, temperature loggers were buried at depths and in beach zones representative of turtle nesting sites. Data collected for 12,546 days revealed seasonal and spatial patterns of sand temperature. Depth effects were minimal, perhaps modulated by shade from vegetation. Coolest and warmest temperatures were recorded in the sites heavily shaded in vegetation during the austral winter and in sites partially shaded in vegetation during summer respectively. Overall, sand temperatures were relatively cool during the nesting seasons of both species which would likely produce fairly balanced hatchling sex ratios of 53% and 63% male hatchlings, respectively, for hawksbill and green turtles. This result contrasts with the predominantly high female skew reported for offspring at most rookeries around the globe and highlights how local beach characteristics can drive incubation temperatures. Our evidence suggests that sites characterized by heavy shade associated with intact natural vegetation are likely to provide conditions suitable for male hatchling production in a warming world.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Marine pathogens of the genus Labyrinthula have been identified as the cause of wasting disease in seagrass systems in both temperate and subtropical regions. An understanding of the association between environmental factors and the prevalence of wasting disease in seagrass meadows is important for elucidating plant-pathogen interactions in coastal environments. We conducted a survey of 7 turtle grass-dominated beds within the Florida Keys National Marine Sanctuary to assess the relationship between environmental and biological parameters on seagrass health. All sites contained Labyrinthula spp.; the most pathogenic strain was obtained from an anthropogenically impacted site. Leaf and total biomass, in addition to root/rhizome carbon content, canopy light and % light transmitted, all displayed strong negative correlations with a wasting index (WI). It was noted that many of the same environmental measurements that showed negative correlations with WI also displayed strong positive correlations with canopy light levels. These data suggest that light availability may be an important factor that has previously been understated in the seagrass disease literature yet warrants more attention with respect to turtle grass susceptibility to infection. Studies such as this are important because they identify gaps in our understanding of plant-pathogen interactions in subtropical marine ecosystems. Furthermore, the relationships identified in this study may offer insight into which factors are most useful in identifying "at-risk" meadows prior to the onset of larger scale die-off events.