111 resultados para Time varying control systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The direct approach in designing functional observers was first presented in [1] for estimating a single function of the states of a Linear Time-Invariant (LTI) system. One of the benefits of the direct scheme is that it does not require solving the interconnected Sylvester equations that appear in the other observer design approaches. In the present paper, the direct approach is extended to reconstruct multiple functions of the states in such a way that the minimum possible order of the observer is achieved. The observer is designed so that an asymptotic functional observer can be obtained with arbitrary convergence rate. In the proposed methodology, it is not necessary that a reduced order observer exists for the desired functions to be estimated. To release this limitation, an algorithm is employed to find some auxiliary functions in the minimum required number to be appended to the desired functions. This method assumes that the system is functional observable. This assumption however is less restrictive than the observability and detectability conditions of the system. A numerical example and simulation results explain the efficacy and the benefits of the proposed algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the robust and accurate capture of human joint poses and bio-kinematic movements for exercise monitoring in real-time tele-rehabilitation applications. Recently developed model-based estimation ideas are used to improve the accuracy, robustness, and real-time characteristics considered vital for applications, where affordability and domestic use are the primary focus. We use the spatial diversity of the arbitrarily positioned Microsoft Kinect receivers to improve the reliability and promote the uptake of the concept. The skeleton-based information is fused to enhance accuracy and robustness, critical for biomedical applications. A specific version of a robust Kalman filter (KF) in a linear framework is employed to ensure superior estimator convergence and real-time use, compared to other commonly used filters. The algorithmic development was conducted in a generic form and computer simulations were conducted to verify our assertions. Hardware implementations were carried out to test the viability of the proposed state estimator in terms of the core requirements of reliability, accuracy, and real-time use. Performance of the overall system implemented in an information fusion context was evaluated against the commercially available and industry standard Vicon system for different exercise routines, producing comparable results with much less infrastructure and financial investment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the problem of stochastic stability analysis of discrete-time two-dimensional (2-D) Markovian jump systems (MJSs) described by the Roesser model with interval time-varying delays. The transition probabilities of the jumping process/Markov chain are assumed to be uncertain, that is, they are not exactly known but can be estimated. A Lyapunov-like scheme is first extended to 2-D MJSs with delays. Based on some novel 2-D summation inequalities proposed in this paper, delay-dependent stochastic stability conditions are derived in terms of linear matrix inequalities (LMIs) which can be computationally solved by various convex optimization algorithms. Finally, two numerical examples are given to illustrate the effectiveness of the obtained results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to low electricity rates at nighttime, home charging for electric vehicles (EVs) is conventionally favored. However, the recent tendency in support of daytime workplace charging that absorbs energy produced by solar photovoltaic (PV) panels appears to be the most promising solution to facilitating higher PV and EV penetration in the power grid. This paper studies optimal sizing of workplace charging stations considering probabilistic reactive power support for plug-in hybrid electric vehicles (PHEVs), which are powered by PV units in medium voltage (MV) commercial networks. In this study, analytical expressions are first presented to estimate the size of charging stations integrated with PV units with an objective of minimizing energy losses. These stations are capable of providing reactive power support to the main grid in addition to charging PHEVs while considering the probability of PV generation. The study is further extended to investigate the impact of time-varying voltage-dependent charging load models on PV penetration. The simulation results obtained on an 18-bus test distribution system show that various charging load models can produce dissimilar levels of PHEV and PV penetration. Particularly, the maximum energy loss and peak load reductions are achieved at 70.17% and 42.95% respectively for the mixed charging load model, where the system accommodates respective PHEV and PV penetration levels of 9.51% and 50%. The results of probabilistic voltage distributions are also thoroughly reported in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In modern power electronic systems, DC-DC converter is one of the main controlled power sources for driving DC systems. But the inherent nonlinear and time-varying characteristics often result in some difficulties mostly related to the control issue. This paper presents a robust nonlinear adaptive controller design with a recursive methodology based on the pulse width modulation (PWM) to drive a DC-DC buck converter. The proposed controller is designed based on the dynamical model of the buck converter where all parameters within the model are assumed as unknown. These unknown parameters are estimated through the adaptation laws and the stability of these laws are ensured by formulating suitable control Lyapunov functions (CLFs) at different stages. The proposed control scheme also provides robustness against external disturbances as these disturbances are considered within the model. One of the main features of the proposed scheme is that it overcomes the over-parameterization problems of unknown parameters which usually appear in some conventional adaptive methods. Finally, the effectiveness of the proposed control scheme is verified through the simulation results and compared to that of an existing adaptive backstepping controller. Simulation results clearly indicate the performance improvement in terms of a faster output voltage tracking response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the notion of the cumulative time varying graph (C-TVG) is proposed to model the high dynamics and relationships between ordered static graph sequences for space-based information networks (SBINs). In order to improve the performance of management and control of the SBIN, the complexity and social properties of the SBIN's high dynamic topology during a period of time is investigated based on the proposed C-TVG. Moreover, a cumulative topology generation algorithm is designed to establish the topology evolution of the SBIN, which supports the C-TVG based complexity analysis and reduces network congestions and collisions resulting from traditional link establishment mechanisms between satellites. Simulations test the social properties of the SBIN cumulative topology generated through the proposed C-TVG algorithm. Results indicate that through the C-TVG based analysis, more complexity properties of the SBIN can be revealed than the topology analysis without time cumulation. In addition, the application of attack on the SBIN is simulated, and results indicate the validity and effectiveness of the proposed C-TVG and C-TVG based complexity analysis for the SBIN.