110 resultados para Temperate Estuary


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new found ability to measure physical attributes of the marine environment at high resolution across broad spatial scales has driven the rapid evolution of benthic habitat mapping as a field in its own right. Improvement of the resolution and ecological validity of seafloor habitat distribution models has, for the most part, paralleled developments in new generations of acoustic survey tools such as multibeam echosounders. While sonar methods have been well demonstrated to provide useful proxies of the relatively static geophysical patterns that reflect distribution of benthic species and assemblages, the spatially and temporally variable influence of hydrodynamic energy on habitat distribution have been less well studied. Here we investigate the role of wave exposure on patterns of distribution of near-shore benthic habitats. A high resolution spectral wave model was developed for a 624 km2 site along Cape Otway, a major coastal feature of western Victoria, Australia. Comparison of habitat classifications implemented using the Random Forests algorithm established that significantly more accurate estimations of habitat distribution were obtained by including a fine-scale numerical wave model, extended to the seabed using linear wave theory, than by using depth and seafloor morphology information alone. Variable importance measures and map interpretation indicated that the spatial variation in wave-induced bottom orbital velocity was most influential in discriminating habitat classes containing the canopy forming kelp Ecklonia radiata, a foundation kelp species that affects biodiversity and ecological functioning on shallow reefs across temperate Australasia. We demonstrate that hydrodynamic models reflecting key environmental drivers on wave-exposed coastlines are important in accurately defining distributions of benthic habitats. This study highlights the suitability of exposure measures for predictive habitat modeling on wave-exposed coastlines and provides a basis for continuing work relating patterns of biological distribution to remotely-sensed patterns of the physical environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding Avian Influenza Virus (AIV) infection dynamics in wildlife is crucial because of possible virus spill over to livestock and humans. Studies from the northern hemisphere have suggested several ecological and environmental drivers of AIV prevalence in wild birds. To determine if the same drivers apply in the southern hemisphere, where more irregular environmental conditions prevail, we investigated AIV prevalence in ducks in relation to biotic and abiotic factors in south-eastern Australia. We sampled duck faeces for AIV and tested for an effect of bird numbers, rainfall anomaly, temperature anomaly and long-term ENSO (El-Niño Southern Oscillation) patterns on AIV prevalence. We demonstrate a positive long term effect of ENSO-related rainfall on AIV prevalence. We also found a more immediate response to rainfall where AIV prevalence was positively related to rainfall in the preceding 3-7 months. Additionally, for one duck species we found a positive relationship between their numbers and AIV prevalence, while prevalence was negatively or not affected by duck numbers in the remaining four species studied. In Australia largely non-seasonal rainfall patterns determine breeding opportunities and thereby influence bird numbers. Based on our findings we suggest that rainfall influences age structures within populations, producing an influx of immunologically naïve juveniles within the population, which may subsequently affect AIV infection dynamics. Our study suggests that drivers of AIV dynamics in the northern hemisphere do not have the same influence at our south-east Australian field site in the southern hemisphere due to more erratic climatological conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire is an integral disturbance shaping forest community dynamics over large scales. However, understanding the relationship between fire induced habitat disturbance and biodiversity remain equivocal. Ecological theories including the intermediate disturbance hypothesis (IDH) and the habitat accommodation model (HAM) offer predictive frameworks that could explain faunal responses to fire disturbances. We used an 80 year post-fire chronosequence to investigate small reptile community responses to fires in temperate forests across 74 sites. First, we evaluated if changes in species richness, abundance and evenness post-fire followed trends of prior predictions, including the IDH. Second, using competing models of fine scale habitat elements we evaluated the specific ways which fire influenced small reptiles. Third, we evaluated support for the HAM by examining compositional changes of reptile community post-fire. Relative abundance was positively correlated to age post-fire while richness and evenness showed no associations. The abundance trend was as expected based on the prior prediction of sustained population increase post-disturbance, but the trend for richness contradicted the prediction of highest diversity at intermediate levels of disturbance (according to IDH). Abundance changes were driven mainly by changes in overstorey, ground layer, and shelter, while richness and evenness did not associate with any vegetation parameter. Community composition was not strongly correlated to age since fire, thus support for the HAM was weak. Overall, in this ecosystem, frequent fire disturbances can be detrimental to small reptiles. Future studies utilizing approaches based on species traits could enhance our understanding of biodiversity patterns post-disturbance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recovery from disturbance is a key element of ecosystem persistence, and recovery can be influenced by large-scale regional differences and smaller local-scale variations in environmental conditions. Seagrass beds are an important yet threatened nearshore habitat and recover from disturbance by regrowth, vegetative extension and dispersive propagules. We described recovery pathways from small-scale disturbances in the seagrass Zostera nigricaulis in Port Phillip Bay, a large embayment in southeastern Australia, and tested whether these pathways differed between 5 regions with different hydrodynamic conditions and water quality, and between sites within those regions. Recovery pathways were broadly consistent. When aboveground biomass was removed, recovery, defined as the point at which disturbed areas converged with undisturbed controls, took from 2 to 8 mo, but when we removed above-and below-ground biomass, it took between 2 and 13 mo. There was no evidence of recovery resulting from sexual reproduction at any sites regardless of the presence of seeds in the sediment or flower production. We found no differences in recovery at the regional scale, but we found substantial differences between local sites. At some sites, rapid recovery occurred because seagrasses grew quickly, but at others, apparent recovery occurred because regrowth coincided with overall declines in cover of undisturbed areas. Recovery time was unrelated to seagrass canopy height, biomass, percentage cover, stem density, seed bank density, epiphyte cover or sediment organic matter in seagrass adjacent to disturbance experiments. This study highlights the importance of understanding fine-scale variation in local recovery mechanisms, which may override or obscure any regional signal.