110 resultados para PLASTIC-DEFORMATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an investigation of the effect of deformation twinning on the visco-plastic response and stress localization in a low stacking fault energy twinning-induced plasticity (TWIP) steel under uniaxial tension loading. The three-dimensional full field response was simulated using the fast Fourier transform method. The initial microstructure was obtained from a three dimensional serial sectionusing electron backscatter diffraction. Twin volume fraction evolution upon strain was measured so the hardening parameters of the simple Voce model could be identified to fit both the stress-strain behavior and twinning activity. General trends of texture evolution were acceptably predicted including the typical sharpening and balance between the 1 1 1 fiber and the 1 0 0 fiber. Twinning was found to nucleate preferentially at grain boundaries although the predominant twin reorientation scheme did not allow spatial propagation to be captured. Hot spots in stress correlated with the boundaries of twinned voxel domains, which either impeded or enhanced twinning based on which deformation modes were active locally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A laboratory-based transmission X-ray diffraction technique was developed to measure elastic lattice strains parallel to the loading direction during in situ tensile deformation. High-quality transmission X-ray diffraction data were acquired in a time frame suitable for in situ loading experiments by application of a polycapillary X-ray optic with a conventional laboratory Cu X-ray source. Based on the measurement of two standard reference materials [lanthanum hexaboride (NIST SRM 660b) and silicon (NIST SRM 640c)], precise instrumental alignment and calibration of the transmission diffraction geometry were realized. These results were also confirmed by the equivalent data acquired using the standard Bragg-Brentano measurement geometry. An empirical Caglioti function was employed to describe the instrumental broadening, while an axis of rotation correction was used to measure and correct the specimen displacement from the centre of the goniometer axis. For precise Bragg peak position and hkil intensity information, a line profile fitting methodology was implemented, with Pawley refinement used to measure the sample reference lattice spacings (d o (hkil)). It is shown that the relatively large X-ray probe size available (7 × 714mm) provides a relatively straightforward approach for improving the grain statistics for the study of metal alloys, where grain sizes in excess of 114μm can become problematic for synchrotron-based measurements. This new laboratory-based capability was applied to study the lattice strain evolution during the elastic-plastic transition in extruded and rolled magnesium alloys. A strain resolution of 2 × 10-4 at relatively low 2θ angles (20-65° 2θ) was achieved for the in situ tensile deformation studies. In situ measurement of the elastic lattice strain accommodation with applied stress in the magnesium alloys indicated the activation of dislocation slip and twin deformation mechanisms. Furthermore, measurement of the relative change in the intensity of 0002 and 10 3 was used to quantify {10 2} 011 tensile twin onset and growth with applied load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flow lines were analysed in aluminium alloy 6061 during equal channel angular extrusion (ECAE) in a 90° die with and without the application of back pressure during pressing. The lines appeared much more rounded when a back pressure was applied compared to the case of conventional ECAE testing. With the help of an analytic flow function, the deformation field was obtained. It is shown that back pressure slightly lowers the total strain, strongly increases the size of the plastic zone and significantly reduces the plastic strain rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrafine-grained (UFG) metals produced by equal channel angular pressing (ECAP) exhibit outstanding mechanical properties. They show high strength under monotonic loading as well as strongly enhanced fatigue lives in the Wöhler S-N-plot compared to their coarse grained (CG) counterparts. It could be shown that the fatigue lives can be significantly enhanced further by applying backpressure during ECAP. Besides the positive effect of backpressure on the processability of hard to deform materials via ECAP, the hydrostatic stress induced by backpressure also influences the mechanical properties under monotonic and cyclic loading. Therefore the influence of backpressure on ECAPed Cu99.5 and on the ECAPed aluminum alloy AA5754 was investigated. It is shown that backpressure has no effect on the hardness and grain size in Cu99.5 but changes the grain boundary misorientation to higher fractions of low angle grain boundaries. Also the temperature dependency of the yield strength as well as the hardening behavior under monotonic compression is affected. The cyclic deformation behavior of Cu99.5 is not strongly influenced by backpressure, but the mean stress level changes drastically. The fatigue life increases with the application of backpressure at low plastic amplitudes due to a change in the crack initiation and propagation. Aim of this work is the investigation of the influence of backpressure during equal channel angular pressing (ECAP) on the mechanical properties under monotonic and cyclic loading. Therefore we performed hardness measurements, compression, and fatigue tests on ECAPed Cu99.5 and AA5754. The results are discussed in terms of microstructure and relevant deformation and damage mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of ageing on deformation twinning in an extruded Mg-6Sn-3Zn-0.04Na alloy is investigated. In-situ compression tests have been carried out using high resolution synchrotron X-Ray Diffraction (XRD) to measure the influence of precipitates on twining activity. Synchrotron experiments revealed the increase in the critical resolved shear stress of twinning with ageing. The compressive yield strength (along the extrusion direction) of the aged sample increased by ∼ 150% over the non-aged specimen. To obtain statistical insight into the twinning activity, the microstructure of the non-aged and aged samples (200°C, 24 hours) deformed up to ∼1% plastic strain was studied using optical microscopy. A higher number of thinner twins were observed in the microstructure of the aged sample compared to the non-aged sample.