142 resultados para Habitat


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding what constitutes high quality habitat is crucial for the conservation of species, especially those threatened with extinction. Habitat quality frequently is inferred by comparing the attributes of sites where a species is present with those where it is absent. However, species presence may not always indicate high quality habitat. Demographic parameters are likely to provide a more biologically relevant measure of quality, including a species' ability to successfully reproduce. We examined factors believed to influence territory quality for the grey-crowned babbler (Pomatostomus temporalis), a cooperatively breeding woodland bird that has experienced major range contraction and population decline in south-eastern Australia. Across three broad regions, we identified active territories and determined the presence of fledglings and the size of family groups, as surrogates of territory quality. These measures were modelled in relation to habitat attributes within territories, the extent of surrounding wooded vegetation, isolation from neighbouring groups, and the size of the neighbourhood population. Fledgling presence was strongly positively associated with group size, indicating that helpers enhance breeding success. Surprisingly, no other territory or landscape-scale variables predicted territory quality, as inferred from either breeding success or group size. Relationships between group size and environmental variables may be obscured by longer-term dynamics in group size. Variation in biotic interactions, notably competition from the noisy miner (Manorina melanocephala), also may contribute. Conservation actions that enhance the number and size of family groups will contribute towards reversing declines of this species. Despite associated challenges, demographic studies have potential to identify mechanistic processes that underpin population performance; critical knowledge for effective conservation management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We tried to unravel the possible links between the skewed predation risk in Uca tangeri (where large individuals are more at risk from avian predators) and size-dependent changes in the physiology and habitat choice of this fiddler crab species. Over a transect running from low to high in the tidal zone of a beach in Mauritania, the temperature profile at various depths in the substrate, the water-table level of seep water, salt concentration of seep water, depth of the aerobic level, operative temperatures on the surface, and size distribution of crabs were assessed. In addition, resting metabolic rates, Q10 and thermal and starvation tolerances were estimated. Going from low to high in the tidal zone, crab size and burrow depth increased. At the preferred burrowing depth, microclimatological conditions appeared to be equally favourable at all sites. At the surface, conditions were more favourable low in the tidal zone, where also food availability is sufficient to enable small crabs to forage in the vicinity of their burrows. Large crabs have higher energy requirements and are thereby forced to forage in flocks low in the tidal zone where food is probably more abundant. Low in the tidal zone, digging deeply is impossible as the aerobic layer is rather thin. Large crabs prefer living high in the tidal zone as (1) deep burrows ensure better protection against predators, (2) more time is available for digging holes and (3) the substrate is better suited for reproduction. Energy reserves in late summer ensured an average of 34 days of survival. It is argued that the allotment of energy to growth must be considerable even in reproducing animals; the rewards of growth being the disproportional increase in reproductive output with size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. In a system where depletion drives a habitat shift, the hypothesis was tested that animals switch habitat as soon as the average daily net energy intake (or gain) drops below that attainable in the alternative habitat.

2. The study was performed in the Lauwersmeer area. Upon arrival during the autumn migration, Bewick's swans first feed on below-ground tubers of fennel pondweed on the lake, but subsequently switched to feeding on harvest remains in sugar beet fields.

3. The daily energy intake was estimated by multiplying the average time spent foraging per day with the instantaneous energy intake rate while foraging. In the case of pondweed feeding, the latter was estimated from the functional response and the depletion of tuber biomass. In the case of beet feeding, it was estimated from dropping production rate. Gross energy intake was converted to metabolizable energy intake using the assimilation as determined in digestion trials. The daily energy expenditure was estimated by the time-energy budget method. Energetic costs were determined using heart rate.

4. The daily gain of pondweed feeding at the median date of the habitat switch (i.e. when 50% of the swans had switched) was compared with that of beet feeding. The daily gain of beet feeding was calculated for two strategies depending on the night activity on the lake: additional pondweed feeding (mixed feeding) or sleeping (pure beet feeding).

5. The majority of the swans switched when the daily gain they could achieve by staying on the pondweed bed fell just below the average daily gain of pure beet feeders. However, mixed feeders would attain an average daily gain considerably above that of pondweed feeders. A sensitivity analysis showed that this result was robust.

6. We therefore reject the hypothesis that the habitat switch by swans can be explained by simple long-term energy rate maximization. State-dependency, predation risk, and protein requirements are put forward as explanations for the delay in habitat switch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased recognition of the global importance of salt marshes as 'blue carbon' (C) sinks has led to concern that salt marshes could release large amounts of stored C into the atmosphere (as CO2) if they continue undergoing disturbance, thereby accelerating climate change. Empirical evidence of C release following salt marsh habitat loss due to disturbance is rare, yet such information is essential for inclusion of salt marshes in greenhouse gas emission reduction and offset schemes. Here we investigated the stability of salt marsh (Spartinaalterniflora) sediment C levels following seagrass (Thallasiatestudinum) wrack accumulation; a form of disturbance common throughout the world that removes large areas of plant biomass in salt marshes. At our study site (St Joseph Bay, Florida, USA), we recorded 296 patches (7.5 ± 2.3 m(2) mean area ± SE) of vegetation loss (aged 3-12 months) in a salt marsh meadow the size of a soccer field (7 275 m(2)). Within these disturbed patches, levels of organic C in the subsurface zone (1-5 cm depth) were ~30% lower than the surrounding undisturbed meadow. Subsequent analyses showed that the decline in subsurface C levels in disturbed patches was due to loss of below-ground plant (salt marsh) biomass, which otherwise forms the main component of the long-term 'refractory' C stock. We conclude that disturbance to salt marsh habitat due to wrack accumulation can cause significant release of below-ground C; which could shift salt marshes from C sinks to C sources, depending on the intensity and scale of disturbance. This mechanism of C release is likely to increase in the future due to sea level rise; which could increase wrack production due to increasing storminess, and will facilitate delivery of wrack into salt marsh zones due to higher and more frequent inundation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Networks of marine protected areas (MPAs) are being adopted globally to protect ecosystems and supplement fisheries management. The state of California recently implemented a coast-wide network of MPAs, a statewide seafloor mapping program, and ecological characterizations of species and ecosystems targeted for protection by the network. The main goals of this study were to use these data to evaluate how well seafloor features, as proxies for habitats, are represented and replicated across an MPA network and how well ecological surveys representatively sampled fish habitats inside MPAs and adjacent reference sites. Seafloor data were classified into broad substrate categories (rock and sediment) and finer scale geomorphic classifications standard to marine classification schemes using surface analyses (slope, ruggedness, etc.) done on the digital elevation model derived from multibeam bathymetry data. These classifications were then used to evaluate the representation and replication of seafloor structure within the MPAs and across the ecological surveys. Both the broad substrate categories and the finer scale geomorphic features were proportionately represented for many of the classes with deviations of 1-6% and 0-7%, respectively. Within MPAs, however, representation of seafloor features differed markedly from original estimates, with differences ranging up to 28%. Seafloor structure in the biological monitoring design had mismatches between sampling in the MPAs and their corresponding reference sites and some seafloor structure classes were missed entirely. The geomorphic variables derived from multibeam bathymetry data for these analyses are known determinants of the distribution and abundance of marine species and for coastal marine biodiversity. Thus, analyses like those performed in this study can be a valuable initial method of evaluating and predicting the conservation value of MPAs across a regional network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The food resource hypothesis of breeding habitat selection in beach-nesting birds suggests that birds breed at sites with more prey to meet the increased energetic requirements associated with breeding. We compare prey resources using pitfall traps and core samples at breeding sites and absence sites of the eastern population of hooded plover, Thinornis rubricollis rubricollis, which, in this part of its range, is a threatened obligate beach bird. Breeding sites had higher abundances, equivalent species richness, and different assemblages of invertebrate prey compared with absence sites. Assemblages at breeding sites were characterised by more isopods, and fewer beetles of the family Phycosecidae. Breeding habitat selection by plovers appears to be associated with selection for sites with more food, and any process that degrades food resources at a site (e.g. kelp harvesting or marine pollution events) may reduce the likelihood of occupancy of that site by breeding birds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Statistical modelling of habitat suitability is an important tool for planning conservation interventions, particularly for areas where species distribution data are expensive or hard to collect. Sometimes however the predictor variables typically used in habitat suitability modelling are themselves difficult to obtain or not meaningful at the geographical extent of the study, as is the case for the Alaotran gentle lemur Hapalemur alaotrensis, a critically endangered lemur confined to the marshes of Lake Alaotra in Madagascar.2. We developed a habitat suitability model where all predictor variables, including vegetation indices and image texture measures at different scales (as surrogates for habitat structure), were derived from Landsat7 satellite imagery. Using relatively few presence records, the maximum entropy (Maxent) approach and AUC were used to assess the performance of candidate predictor variables, for studying the effect of scale, model selection and mapping suitable habitat.3. This study demonstrated the utility of satellite imagery as a single source of predictor variables for a Maxent habitat suitability model at the landscape level, within a restricted geographical extent and with a fine grain, in a case where predictor variables typically used at the macro-scale level (e.g. climatic and topographic) were not applicable.4. In the case of H. alaotrensis, the methodology generated a habitat suitability map to inform conservation management in Lake Alaotra and a replicable protocol to allow rapid updates to habitat suitability maps in the future. The exploration of candidate predictor variables allowed the identification of scales that appear ecologically relevant for the species.5. Synthesis and applications. This study presents a cost-effective combination of maximum entropy habitat suitability modelling and satellite imagery, where all predictor variables are derived solely from Landsat7 images. With a habitat modelling method like Maxent that shows good performance with few presence samples and Landsat images now freely available, the methodology can play an important role in rapid assessments of the status of species at the landscape level in data-poor regions, when typical macro-scale environmental predictors are of little use or difficult to obtain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To quantify the consequences of major threats to biodiversity, such as climate and land-use change, it is important to use explicit measures of species persistence, such as extinction risk. The extinction risk of metapopulations can be approximated through simple models, providing a regional snapshot of the extinction probability of a species. We evaluated the extinction risk of three species under different climate change scenarios in three different regions of the Mexican cloud forest, a highly fragmented habitat that is particularly vulnerable to climate change. Location Cloud forests in Mexico.
Methods: Using Maxent, we estimated the potential distribution of cloud forest for three different time horizons (2030, 2050 and 2080) and their overlap with protected areas. Then, we calculated the extinction risk of three contrasting vertebrate species for two scenarios: (1) climate change only (all suitable areas of cloud forest through time) and (2) climate and land-use change (only suitable areas within a currently protected area), using an explicit patch-occupancy approximation model and calculating the joint probability of all populations becoming extinct when the number of remaining patches was less than five.
Results: Our results show that the extent of environmentally suitable areas for cloud forest in Mexico will sharply decline in the next 70 years. We discovered that if all habitat outside protected areas is transformed, then only species with small area requirements are likely to persist. With habitat loss through climate change only, high dispersal rates are sufficient for persistence, but this requires protection of all remaining cloud forest areas.
Main conclusions: Even if high dispersal rates mitigate the extinction risk of species due to climate change, the synergistic impacts of changing climate and land use further threaten the persistence of species with higher area requirements. Our approach for assessing the impacts of threats on biodiversity is particularly useful when there is little time or data for detailed population viability analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over 7500 oil and gas structures (e.g. oil platforms) are installed in offshore waters worldwide and many will require decommissioning within the next two decades. The decision to remove such structures or turn them into reefs (i.e. 'rigs-to-reefs') hinges on the habitat value they provide, yet this can rarely be determined because the residency of mobile species is difficult to establish. Here, we test a novel solution to this problem for reef fishes; the use of otolith (earstone) properties to identify oil structures of residence. We compare the otolith microchemistry and otolith shape of a site-attached coral reef fish (Pseudanthias rubrizonatus) among four oil structures (depth 82-135 m, separated by 9.7-84.2 km) on Australia's North West Shelf to determine if populations developed distinct otolith properties during their residency. Microchemical signatures obtained from the otolith edge using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) differed among oil structures, driven by elements Sr, Ba and Mn, and to a lesser extent Mg and Fe. A combination of microchemical data from the otolith edge and elliptical Fourier (shape) descriptors allowed allocation of individuals to their 'home' structure with moderate accuracy (overall allocation accuracy: 63.3%, range: 45.5-78.1%), despite lower allocation accuracies for each otolith property in isolation (microchemistry: 47.5%, otolith shape: 45%). Site-specific microchemical signatures were also stable enough through time to distinguish populations during 3 separate time periods, suggesting that residence histories could be recreated by targeting previous growth zones in the otolith. Our results indicate that reef fish can develop unique otolith properties during their residency on oil structures which may be useful for assessing the habitat value of individual structures. The approach outlined here may also be useful for determining the residency of reef fish on artificial reefs, which would assist productivity assessments of these habitats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Large brown seaweeds (kelps) form forests in temperate and boreal marine systems that serve as foundations to the structure and dynamics of communities. Mapping the distributions of these species is important to understanding the ecology of coastal environments, managing marine ecosystems (e.g., spatial planning), predicting consequences of climate change and the potential for carbon production. We demonstrate how combining seafloor mapping technologies (LiDAR and multibeam bathymetry) and models of wave energy to map the distribution and relative abundance of seaweed forests of Ecklonia radiata can provide complete coverage over hundreds of square kilometers. Using generalized linear mixed models (GLMMs), we associated observations of E. radiata abundance from video transects with environmental variables. These relationships were then used to predict the distribution of E. radiata across our 756.1km2 study area off the coast of Victoria, Australia. A reserved dataset was used to test the accuracy of these predictions. We found that the abundance distribution of E. radiata is strongly associated with depth, presence of rocky reef, curvature of the reef topography, and wave exposure. In addition, the GLMM methodology allowed us to adequately account for spatial autocorrelation in our sampling methods. The predictive distribution map created from the best GLMM predicted the abundance of E. radiata with an accuracy of 72%. The combination of LiDAR and multibeam bathymetry allowed us to model and predict E. radiata abundance distribution across its entire depth range for this study area. Using methods like those presented in this study, we can map the distribution of macroalgae species, which will give insight into ecological communities, biodiversity distribution, carbon uptake, and potential sequestration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context In peri-urban environments, high availability of anthropogenic resources may result in relatively high abundances of some species, with potentially negative implications for other native biota. Effective management of such impacts requires understanding of the spatial ecology of problem species. However, home range and habitat use have not been described for the little raven (Corvus mellori), a superabundant native predator that occurs in urban and natural habitats, including those where threatened shorebirds breed. Aims The aim of this study was to provide basic information on little raven home range, habitat use and movements in a coastal peri-urban landscape. Methods Between October 2011 and January 2012 we radio-tracked 20 little ravens captured in a coastal wetland (near Melbourne, Australia). Key results Little ravens were highly mobile, moving up to 9.9km in an hour (median≤2km), and had large ranges: Minimum Convex Polygons were 1664-9989ha (median≤3362ha). Although most birds used both anthropogenic and natural habitats, some birds strongly selected for coastal wetland habitat. Birds used multiple roosts during the study period, most of which occurred in grassland (58.7%) or urban (22.3%) areas. Movement of up to 8.3km (median≤2.2km) between roosts during the night was also detected. Conclusions Ravens were highly mobile and used large home ranges and a variety of habitats, with habitat preferences varying between birds. Implications Considering the large home ranges and inter-individual variation in habitat preferences of little raven populations, localised management to reduce their impacts on breeding shorebirds is unlikely to be successful. Journal compilation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new found ability to measure physical attributes of the marine environment at high resolution across broad spatial scales has driven the rapid evolution of benthic habitat mapping as a field in its own right. Improvement of the resolution and ecological validity of seafloor habitat distribution models has, for the most part, paralleled developments in new generations of acoustic survey tools such as multibeam echosounders. While sonar methods have been well demonstrated to provide useful proxies of the relatively static geophysical patterns that reflect distribution of benthic species and assemblages, the spatially and temporally variable influence of hydrodynamic energy on habitat distribution have been less well studied. Here we investigate the role of wave exposure on patterns of distribution of near-shore benthic habitats. A high resolution spectral wave model was developed for a 624 km2 site along Cape Otway, a major coastal feature of western Victoria, Australia. Comparison of habitat classifications implemented using the Random Forests algorithm established that significantly more accurate estimations of habitat distribution were obtained by including a fine-scale numerical wave model, extended to the seabed using linear wave theory, than by using depth and seafloor morphology information alone. Variable importance measures and map interpretation indicated that the spatial variation in wave-induced bottom orbital velocity was most influential in discriminating habitat classes containing the canopy forming kelp Ecklonia radiata, a foundation kelp species that affects biodiversity and ecological functioning on shallow reefs across temperate Australasia. We demonstrate that hydrodynamic models reflecting key environmental drivers on wave-exposed coastlines are important in accurately defining distributions of benthic habitats. This study highlights the suitability of exposure measures for predictive habitat modeling on wave-exposed coastlines and provides a basis for continuing work relating patterns of biological distribution to remotely-sensed patterns of the physical environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wildlife living in the suburbs faces the challenge of dealing with human presence and yard management (including the occurrence of pets) which vary at the scale of the house block. This study examined the influence of ecological factors (e.g. extent of grass and food availability) and anthropogenic factors (e.g. human activity and garden usage) on breeding site choice and reproductive success of the ground-nesting masked lapwing Vanellus miles on Phillip Island, Australia. Lapwings nested less frequently in residential properties (high levels of human usage) compared with vacant blocks and holiday houses. They were also more likely to breed on properties with high food availability and larger areas of grass. None of these variables influenced clutch size or the probability of eggs hatching, although larger clutches and higher hatching rates tended to be associated with more food. This study shows that, for an urban exploiting species, habitat quality is not homogenous at the scale of the house block, and that human activity is avoided by a species generally considered highly tolerant of people.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both habitat patchiness and behaviorally-mediated indirect effects (BMIEs; predator- induced changes in prey behavior that affect the prey's resources) are important in many food webs, but the relationships between these 2 factors have yet to be investigated. To explore effects of habitat patchiness and variation in perceived risk of predation on food-web dynamics, we conducted a factorial experiment in a model aquatic food chain of predator-prey-resource using 2 contrasting predators (adult blue crab Callinectes sapidus and toad fish Opsanus tau), juvenile blue crab as prey, and mussel Geukensia demissa as resource. Both predator presence and habitat patchiness influenced the prey's preference for consuming resources at patch edges instead of interiors. The preference of prey for consuming resources at habitat edges was 4 times stronger in continuous oyster reef habitat than in smaller habitat patches. This suggests that interior resources in continuous habitat experience a refuge from consumption, but this refuge is largely lost in patchy habitat. The mere presence of predators reduced the prey's preference for consuming resources at habitat edges. This BMIE was significant for the ambush predator (toadfish) and the treatment containing both predators, but not for the actively hunting predator (adult blue crab). We conclude that habitat patchiness and predator presence can jointly affect resource distribution by inducing shifts in prey foraging behavior, revealing a need to incorporate BMIEs into habitat fragmentation studies. This conclusion has broad and growing relevance as anthropogenic factors increasingly modify predator abundances and fragment coastal habitats. © Inter-Research 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the feeding ecology of King George whiting Sillaginodes punctatus recruits to determine how diet composition varies between habitat types (seagrass and unvegetated habitats), and between sites separated by distance. Broad-scale sampling of seagrass and unvegetated habitats at nine sites in Port Phillip Bay (Australia) indicated the diet composition varied more by distance into the bay than by habitat. Near the entrance to the bay the diet was dominated by harpacticoids and gammarid amphipods, in the middle reaches of the bay the diet was completely dominated by harpacticoids, while at sites furthest into the bay, mysids and crab zoea were also important. Abundances of prey in guts was significantly higher between 1000 and 2200 hours compared with other times, indicating diurnal feeding. Laboratory determined gut evacuation rate (based on an exponential model) was estimated to be -0·54. Daily rations were highly variable among sites and habitat types. Sillaginodes punctatus recruits consumed much higher quantities of prey on unvegetated habitat than seagrass habitat at some middle reach sites; with prey consumption of harpacticoid copepods on unvegetated habitat approaching 3000 individuals per day at one site. The results of this study provide insight into why habitat associations of S. punctatus recruits within mosaics of seagrass and unvegetated habitat show high spatial variation.