172 resultados para Glucose-transporter Isoforms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The apical cytoplasm of airway epithelium (AE) contains abundant labile zinc (Zn) ions that are involved in the protection of AE from oxidants and inhaled noxious substances. A major question is how dietary Zn traffics to this compartment. In rat airways, in vivo selenite autometallographic (Se-AMG)-electron microscopy revealed labile Zn-selenium nanocrystals in structures resembling secretory vesicles in the apical cytoplasm. This observation was consistent with the starry-sky Zinquin fluorescence staining of labile Zn ions confined to the same region. The vesicular Zn transporter ZnT4 was likewise prominent in both the apical and basal parts of the epithelium both in rodent and human AE, although the apical pools were more obvious. Expression of ZnT4 mRNA was unaffected by changes in the extracellular Zn concentration. However, levels increased 3-fold during growth of cells in air liquid interface cultures and decreased sharply in the presence of retinoic acid. When comparing nasal versus bronchial human AE cells, there were significant positive correlations between levels of ZnT4 from the same subject, suggesting that nasal brushings may allow monitoring of airway Zn transporter expression. Finally, there were marked losses of both basally-located ZnT4 protein and labile Zn in the bronchial epithelium of mice with allergic airway inflammation. This study is the first to describe co-localization of zinc vesicles with the specific zinc transporter ZnT4 in airway epithelium and loss of ZnT4 protein in inflamed airways. Direct evidence that ZnT4 regulates Zn levels in the epithelium still needs to be provided. We speculate that ZnT4 is an important regulator of zinc ion accumulation in secretory apical vesicles and that the loss of labile Zn and ZnT4 in airway inflammation contributes to AE vulnerability in diseases such as asthma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increase in hepatic glucose production (HGP) that occurs during intense exercise is accompanied by a simultaneous increase in epinephrine, which suggests that epinephrine may be important in regulating HGP. To further investigate this, six trained men were studied twice. The first trial [control (Con)] consisted of 20 min of cycling at 40 ± 1% peak oxygen uptake (V˙o 2 peak) followed by 20 min at 80 ± 2%V˙o 2 peak. During the second trial [epinephrine (Epi)], subjects exercised for 40 min at 41 ± 2%V˙o 2 peak. Epinephrine was infused during the latter 20 min of exercise and resulted in plasma levels similar to those measured during intense exercise in Con. Glucose kinetics were measured using a primed, continuous infusion of [3-3H]glucose. HGP was similar at rest (Con, 11.0 ± 0.5 and Epi, 11.1 ± 0.5 μmol ⋅ kg−1 ⋅ min−1). In Con, HGP increased (P < 0.05) during exercise to 41.0 ± 5.2 μmol ⋅ kg−1 ⋅ min−1at 40 min. In Epi, HGP was similar to Con during the first 20 min of exercise. Epinephrine infusion increased (P < 0.05) HGP to 24.0 ± 2.5 μmol ⋅ kg−1 ⋅ min−1at 40 min, although this was less (P< 0.05) than the value in Con. The results suggest that epinephrine can increase HGP during exercise in trained men; however, epinephrine during intense exercise cannot fully account for the rise in HGP. Other glucoregulatory factors must contribute to the increase in HGP during intense exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The role of adrenaline in regulating hepatic glucose production and muscle glucose uptake during exercise was examined in six adrenaline deficient, bilaterally adrenalectomised humans. Six sex and age matched healthy individuals served as controls (CON).

2. Adrenalectomised subjects cycled for 45 min at 68 ± 1% maximum pulmonary Oμ uptake (VOμ,max), followed by 15 min at 84 ± 2% VOμ,max without (−ADR) or with (+ADR) adrenaline infusion, which elevated plasma adrenaline levels (45 min, 4·49 ± 0·69 nmol l¢; 60 min, 12·41 ± 1·80 nmol l¢; means ± s.e.m.). Glucose kinetics were measured using [3_ÅH]glucose.

3. Euglycaemia was maintained during exercise in CON and −ADR, whilst in +ADR plasma glucose was elevated. The exercise induced increase in hepatic glucose production was similar in +ADR and −ADR; however, adrenaline infusion augmented the rise in hepatic glucose production early in exercise. Glucose uptake increased during exercise in +ADR and −ADR, but was lower and metabolic clearance rate was reduced in +ADR.

4. During exercise noradrenaline and glucagon concentrations increased, and insulin and cortisol concentrations decreased, but plasma levels were similar between trials. Adrenaline infusion suppressed growth hormone and elevated plasma free fatty acids, glycerol and lactate. Alanine and â_hydroxybutyrate levels were similar between trials.

5. The results demonstrate that glucose homeostasis was maintained during exercise in adrenalectomised subjects. Adrenaline does not appear to play a major role in matching hepatic glucose production to the increase in glucose clearance. In contrast, adrenaline infusion results in a mismatch by simultaneously enhancing hepatic glucose production and inhibiting glucose clearance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the effect of increased blood glucose availability on glucose kinetics during exercise. Five trained men cycled for 40 min at 77 ± 1% peak oxygen uptake on two occasions. During the second trial (Glu), glucose was infused at a rate equal to the average hepatic glucose production (HGP) measured during exercise in the control trial (Con). Glucose kinetics were measured by a primed continuous infusion ofd-[3-3H]glucose. Plasma glucose increased during exercise in both trials and was significantly higher in Glu. HGP was similar at rest (Con, 11.4 ± 1.2; Glu, 10.6 ± 0.6 μmol ⋅ kg−1 ⋅ min−1). After 40 min of exercise, HGP reached a peak of 40.2 ± 5.5 μmol ⋅ kg−1 ⋅ min−1in Con; however, in Glu, there was complete inhibition of the increase in HGP during exercise that never rose above the preexercise level. The rate of glucose disappearance was greater (P < 0.05) during the last 15 min of exercise in Glu. These results indicate that an increase in glucose availability inhibits the rise in HGP during exercise, suggesting that metabolic feedback signals can override feed-forward activation of HGP during strenuous exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify the mechanism underlying the exaggerated hyperglycemia during exercise in the heat, six trained men were studied during 40 min of cycling exercise at a workload requiring 65% peak pulmonary oxygen uptake (V˙o 2 peak) on two occasions at least 1 wk apart. On one occasion, the ambient temperature was 20°C [control (Con)], whereas on the other, it was 40°C [high temperature (HT)]. Rates of glucose appearance and disappearance were measured by using a primed continuous infusion of [6,6-2H]glucose. No differences in oxygen uptake during exercise were observed between trials. After 40 min of exercise, heart rate, rectal temperature, respiratory exchange ratio, and plasma lactate were all higher in HT compared with Con (P < 0.05). Plasma glucose levels were similar at rest (Con, 4.54 ± 0.19 mmol/l; HT, 4.81 ± 0.19 mmol/l) but increased to a greater extent during exercise in HT (6.96 ± 0.16) compared with Con (5.45 ± 0.18;P < 0.05). This was the result of a higher glucose rate of appearance in HT during the last 30 min of exercise. In contrast, the glucose rate of disappearance and metabolic clearance rate were not different at any time point during exercise. Plasma catecholamines were higher after 10 and 40 min of exercise in HT compared with Con (P < 0.05), whereas plasma glucagon, cortisol, and growth hormone were higher in HT after 40 min. These results indicate that the hyperglycemia observed during exercise in the heat is caused by an increase in liver glucose output without any change in whole body glucose utilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE--Observational studies show breaking up prolonged sitting has beneficial associations with cardiometabolic risk markers, but intervention studies are required to investigate causality. We examined the acute effects on postprandial glucose and insulin levels of uninterrupted sitting compared with sitting interrupted by brief bouts of light- or moderate-intensity walking.

RESEARCH DESIGN AND METHODS--
Overweight/obese adults (n = 19), aged 45-65 years, were recruited for a randomized three-period, three-treatment acute crossover trial: I) uninterrupted sitting; 2) seated with 2-min bouts of light-intensity walking every 20 rain; and 3) seated with 2-min bouts of moderate-intensity walking every 20 min. A standardized test drink was provided after an initial 2-h period of uninterrupted sitting. The positive incremental area under curves (iAUC) for glucose and insulin (mean [95% CI]) for the 5 h after the test drink (75 g glucose, 50 g fat) were calculated for the respective treatments.

RESULTS--The glucose iAUC (mmol/L) x h after both activity-break conditions was reduced (light: 5.2 [4.1-6.6]; moderate: 4.9 [3.8-6.1]; both P < 0.01) compared with uninterrupted sitting (6.9 [5.5-8.7]). Insulin iAUC (pmol/L) x h was also reduced with both activity-break conditions (light: 633.6 [552.4-727.1]; moderate: 637.6 [555.5-731.9], P < 0.0001) compared with uninterrupted sitting (828.6 [722.0-950.9]).

CONCLUSIONS--Interrupting sitting time with short bouts of light- or moderate-intensity walking lowers postprandial glucose and insulin levels in overweight/obese adults. This may improve glucose metabolism and potentially be an important public health and clinical intervention strategy for reducing cardiovascular risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE--To examine the role of area-level socioeconomic status (SES) on the development of abnormal glucose metabolism (AGM) using national, population-based data.

RESEARCH DESIGN AND METHODS--The Australian Diabetes, Obesity and Lifestyle (AusDiab) study is a national, population-based, longitudinal study of adults aged [greater than or equal to] 25 years. A sample of 4,572 people provided complete baseline (1999 to 2000) and 5-year follow-up (2004 to 2005) data relevant for these analyses. Incident AGM was assessed using fasting plasma glucose and 2-h plasma glucose from oral glucose tolerance tests, and demographic, socioeconomic, and behavioral data were collected by interview and questionnaire. Area SES was defined using the Index of Relative Socioeconomic Disadvantage. Generalized linear mixed models were used to examine the relationship between area SES and incident AGM, with adjustment for covariates and correction for cluster design effects.

RESULTS--Area SES predicted the development of AGM, after adjustment for age, sex, and individual SES. People living in areas with the most disadvantage were significantly more likely to develop AGM, compared with those living in the least deprived areas (odds ratio 1.53; 95% CI 1.07-2.18). Health behaviors (in particular, physical activity) and central adiposity appeared to partially mediate this relationship.

CONCLUSIONS--Our findings suggest that characteristics of the physical, social, and economic aspects of local areas influence diabetes risk. Future research should focus on identifying the aspects of local environment that are associated with diabetes risk and how they might be modified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously used Gene Expression Signature technology to identify methazolamide (MTZ) and related compounds with insulin sensitizing activity in vitro. The effects of these compounds were investigated in diabetic db/db mice, insulin-resistant diet-induced obese (DIO) mice, and rats with streptozotocin (STZ)-induced diabetes. MTZ reduced fasting blood glucose and HbA1c levels in db/db mice, improved glucose tolerance in DIO mice, and enhanced the glucose-lowering effects of exogenous insulin administration in rats with STZ-induced diabetes. Hyperinsulinemic-euglycemic clamps in DIO mice revealed that MTZ increased glucose infusion rate and suppressed endogenous glucose production. Whole-body or cellular oxygen consumption rate was not altered, suggesting MTZ may inhibit glucose production by different mechanism(s) to metformin. In support of this, MTZ enhanced the glucose-lowering effects of metformin in db/db mice. MTZ is known to be a carbonic anhydrase inhibitor (CAI); however, CAIs acetazolamide, ethoxyzolamide, dichlorphenamide, chlorthalidone, and furosemide were not effective in vivo. Our results demonstrate that MTZ acts as an insulin sensitizer that suppresses hepatic glucose production in vivo. The antidiabetic effect of MTZ does not appear to be a function of its known activity as a CAI. The additive glucose-lowering effect of MTZ together with metformin highlights the potential utility for the management of type 2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well established that the central dopaminergic reward pathway is likely involved in alcohol intake and the progression of alcohol dependence. Dopamine transporter (DAT1) mediates the active re-uptake of DA from the synapse and is a principal regulator of dopaminergic neurotransmission. The gene for the human DAT1 displays several polymorphisms, including a 40-bp variable number of tandem repeats (VNTR) ranging from 3 to 16 copies in the 3′-untranslated region (UTR) of the gene. To assess the role of this gene in alcoholism, we genotyped the VNTR of DAT1 gene in a sample of 206 subjects from the Kota population (111 alcohol dependence cases and 95 controls) and 142 subjects from Badaga population (81 alcohol dependence cases and 61 controls). Both populations inhabit a similar environmental zone, but have different ethnic histories. Phenotype was defined based on the DSM-IV criteria. Genotyping was performed using PCR and electrophoresis. The association of DAT1 with alcoholism was tested by using the Clump v1.9 program which uses the Monte Carlo method. In both Kota and Badaga populations, the allele A10 was the most frequent allele followed by allele A9. The genotypic distribution is in Hardy–Weinberg equilibrium in both cases and control groups of Kota and Badaga populations. The DAT1 VNTR was significantly associated with alcoholism in Badaga population but not in Kota population. Our results suggest that the A9 allele of the DAT gene is involved in vulnerability to alcoholism, but that these associations are population specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Survival, oxygen consumption (MO2), total plasma cortisol and glucose levels and gill heat-shock protein 70 (hsp70) expression were measured in 10 and 50 g juvenile Atlantic cod Gadus morhua during an acute temperature increase (2° C h−1) to their critical thermal maximum. Ninety three per cent of the fish in both size classes survived to 24° C; however, mortality was 100% within 15 min of reaching this temperature. The MO2 for both size classes increased significantly with temperature, reaching peak values at 22° C that were c. 2·8-fold those of control (10° C) fish. Resting plasma cortisol and glucose levels were lower in 10 g as compared to 50 g fish. Plasma glucose levels were highly variable in both size classes, and significant increases were only seen at >22° C for the 10 g fish. In contrast, plasma cortisol showed an exponential increase with temperature starting at 16° C in both size classes, and reached maximum levels at 22° C that were 19-fold (10 g fish) and 35-fold (50 g fish) higher than their respective control groups. Both the constitutive (73 kDa) and inducible (72 kDa) isoforms of hsp70 were detected in both size classes using the widely utilized mouse monoclonal antibody. Expression of these isoforms, however, did not change when Atlantic cod were exposed to elevated temperature, and the 72 kDa isoform was not detected using salmonid-specific antibodies. These results indicate that juvenile Atlantic cod are very sensitive to acute increases in water temperature. In addition, they (1) show that MO2and plasma cortisol, but not plasma glucose or gill hsp 70 levels, are sensitive indicators of thermal stress in Atlantic cod and (2) support previous reports that the upper critical temperature for this species is 16° C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Juvenile haddock Melanogrammus aeglefinus (c. 39 g) were exposed to either a handling stressor (1 min out of water) or heat shock (increase from 10 to 15° C for 1 h), and plasma cortisol, plasma glucose and gill hsp70 levels were determined before, and at 1, 3, 6, 12, 24 and 48 h post-stress. The pattern of cortisol increase was similar following both stressors, with levels increasing by 25-fold at 1 h post-stress, but returning to pre-stress levels (2–5 ng ml−1) by 3 h. In contrast, neither handling nor heat shock caused an increase in plasma glucose levels. Although gill hsp70 was detected, presumably constitutive levels, in both control and heat shocked groups, there were not significant changes in gill hsp70 levels after exposure to heat shock. The lack of glucose and hsp70 responses to these typical stressors is consistent with previous studies on Atlantic cod Gadus morhua, and suggests that the stress physiology of Gadidae differs from the ‘typical’ teleost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background— Endothelial dysfunction because of reduced nitric oxide bioavailability is a key feature of essential hypertension. We have found that normotensive siblings of subjects with essential hypertension have impaired endothelial function accompanied by altered arginine metabolism.

Methods and Results— We have identified a novel C/T polymorphism in the 3′UTR of the principal arginine transporter, solute carrier family 7 (cationic amino acid transporter, y+ system), member 1 gene (SLC7A1). The minor T allele significantly attenuates reporter gene expression (P<0.01) and is impaired in its capacity to form DNA-protein complexes (P<0.05). In 278 hypertensive subjects the frequency of the T allele was 13.3% compared with 7.6% in 498 normotensive subjects (P<0.001). Moreover, the overall genotype distribution observed in hypertensives differed significantly from that in normotensives (P<0.001). To complement these studies, we generated an endothelial-specific transgenic mouse overexpressing l-arginine transporter SLC7A1. The Slc7A1 transgenic mice exhibited significantly enhanced responses to the endothelium-dependent vasodilator acetylcholine (−log EC50 for wild-type versus Slc7A1 transgenic: 6.87±0.10 versus 7.56±0.13; P<0.001). This was accompanied by elevated production of nitric oxide by isolated aortic endothelial cells.

Conclusions— The present study identifies a key, functionally active polymorphism in the 3′UTR of SLC7A1. As such, this polymorphism may account for the apparent link between altered endothelial function, l-arginine, and nitric oxide metabolism and predisposition to essential hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new enzymeless glucose sensor has been fabricated via electrospinning technology and subsequent calcination. The morphology and structure of the as-prepared nanofibers have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The electrocatalytic oxidation of glucose in alkaline medium at nickel oxide modified glassy carbon electrodes has been investigated. The modified electrodes offer excellent electrocatalytic activity toward the glucose oxidation at low positive potential (0.3 V). Glucose has been determined chronoamperometrically at the surface of NiO nanofibers modified electrode in 0.5 mM NaOH. Under the optimized condition, the calibration curve is linear in the concentration range of 2 × 10−3 mM∼1 mM, and 1 mM∼9.5 mM. The detection limit (signal-to-noise 3) and response time are 3.394 × 10−6 M and 2 s, respectively. The NiO electrospun nanofibers is easy to prepare and feasible in economy. The modified electrode is steady and can be used repeatedly, so it is reasonable to expect its broad use in non-enzymatic glucose sensor.