134 resultados para GRAPHENE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein, a uniform three-dimensional (3-D) graphene nanodots-encaged porous gold electrode was prepared via ion beam sputtering deposition (IBSD) and mild corrosion chemistry for efficient enzyme electrode fabrication. Enzymes, like glucose oxidase and catalase, were modified with pyrene functionalities and then loaded into the graphene nanodots encaged porous gold electrode via non-covalent π-π stacking interaction between pyrene and graphene. The fabricated enzyme electrodes showed profound reusability and repeatability, high sensitivity, inherent selectivity and enhanced detection range. As for glucose analysis a broad linear range from 0.05 to 100 mM was obtained and the linear range for hydrogen peroxide was 0.005 to 4 mM. Detection limits of 30 μM for glucose and 1 μM for hydrogen peroxide were achieved (S/N = 3), respectively. These electrodes can be applied to analyze the clinical samples with reliable results. The formation mechanism and 3-D structure of the porous electrode were investigated using high resolution transmission electron microscope (HRTEM), atomic force microscopy (AFM), scanning electron microscope (SEM) and electrochemical impedance spectroscopy (EIS). Most importantly, various other ideal biosensors can be fabricated using the same porous electrode and the same enzyme modification methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fast detection and removal of organic dyes from contaminated water has become an urgent environmental issue due to their high toxicity, chemical stability, and low biodegradability. In this paper, we have developed graphene oxide decorated Fe3O4@SiO2 (Fe3O4@SiO2-GO) as a novel adsorbent aiming at the rapid adsorption and trace analysis of organic dyes followed by surface enhanced Raman scattering (SERS). The structure and morphology of the nanocomposites were characterized by transmission electron microscopy (TEM), Fourier infrared spectrometry (FT-IR), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). The obtained nanocomposites were used to adsorb methylene blue (MB) in aqueous solution based on π-π stacking interaction and electrostatic attraction between MB and GO, and the adsorption behaviors of MB were investigated. Moreover, the obtained nanocomposites with adsorbed dyes were separated from the solution and loaded with silver nanoparticles for SERS detection. These nanocomposites showed superior SERS sensitivity and the lowest detectable concentration was 1.0 × 10-7 M.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene oxide (GO) offers great potential as nanoscale reinforcement for cementitious material. In this work, the rheological behaviours of the GO-cement composite were investigated for the first time. It was found that the workability of cement paste (w/c=0.5) is significantly decreased with the addition of 0.02wt% GO sheets. The rheology tests results show that the GO sheets greatly increase the yield stress and viscosity of the cement paste. It is also found that the yield stress and viscosity of the GO-cement composite increase with increasing size of GO sheets. The reduction of workability is undesirable for the application of the novel GO-cement composite. Therefore, further research works are needed to improve the workability of the composite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectroscopy is among the primary techniques for the characterisation of graphene materials, as it provides insights into the quality of measured graphenes including their structure and conductivity as well as the presence of dopants. However, our ability to draw conclusions based on such spectra is limited by a lack of understanding regarding the origins of the peaks. Consequently, traditional characterisation techniques, which estimate the quality of the graphene material using the intensity ratio between the D and the G peaks, are unreliable for both GO and rGO. Herein we reanalyse the Raman spectra of graphenes and show that traditional methods rely upon an apparent G peak which is in fact a superposition of the G and D' peaks. We use this understanding to develop a new Raman characterisation method for graphenes that considers the D' peak by using its overtone the 2D'. We demonstrate the superiority and consistency of this method for calculating the oxygen content of graphenes, and use the relationship between the D' peak and graphene quality to define three regimes. This has important implications for purification techniques because, once GO is reduced beyond a critical threshold, further reduction offers limited gain in conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in wearable electronics, technical textiles, and wearable strain sensing devices have resulted in extensive research on stretchable electrically conductive fibers. Addressing these areas require the development of efficient fiber processing methodologies that do not compromise the mechanical properties of the polymer (typically an elastomer) when nanomaterials are added as conductive fillers. It is highly desirable that the addition of conductive fillers provides not only electrical conductivity, but that these fillers also enhance the stiffness, strength, stretchability, and toughness of the polymer. Here, the compatibility of polyurethane (PU) and graphene oxide (GO) is utilized for the study of the properties of elastomeric conductive fibers prepared by wet-spinning. The GO-reinforced PU fibers demonstrate outstanding mechanical properties with a 200-fold and a threefold enhancement in Young's modulus and toughness, respectively. Postspinning thermal annealing of the fibers results in electrically conductive fibers with a low percolation threshold (≈0.37 wt% GO). An investigation into optimized fiber's electromechanical behavior reveals linear strain sensing abilities up to 70%. Results presented here provide practical insights on how to simultaneously maintain or improve electrical, mechanical, and electromechanical properties in conductive elastomer fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent developments in graphene oxide fibre (GO) processing include exciting demonstrations of hand woven textile structures. However, it is uncertain whether the fibres produced can meet the processing requirements of conventional textile manufacturing. This work reports for the first time the production of highly flexible and tough GO fibres that can be knitted using textile machinery. The GO fibres are made by using a dry-jet wet-spinning method, which allows drawing of the spinning solution (the GO dispersion) in several stages of the fibre spinning process. The coagulation composition and spinning conditions are evaluated in detail, which led to the production of densely packed fibres with near-circular cross-sections and highly ordered GO domains. The results are knittable GO fibres with Young's modulus of ~7.9 GPa, tensile strength of ~135.8 MPa, breaking strain of ~5.9%, and toughness of ~5.7 MJ m(-3). The combination of suitable spinning method, coagulation composition, and spinning conditions led to GO fibres with remarkable toughness; the key factor in their successful knitting. This work highlights important progress in realising the full potential of GO fibres as a new class of textile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we report a novel scalable strategy to prepare a lithium-air battery electrode from 3D Ndoped pierced graphene microparticles (N-PGM) with highly active performance. This approach has combined the merits of spray drying technology and the hard template method. The pierced structured graphene microparticles were characterized physically and electrochemically. An x-ray
photoelectron spectrometer and Raman spectra have revealed that the novel structure possesses a higher N-doping level than conventional graphene without the pierced structure. A much higher BET surface area was also achieved for the N-PGMthan the conventional N-doped graphene microparticles (N-GM). Cyclic voltammetry indicated that the lithium-air battery with the N-PGM electrode has a better utilization for the graphene mass and a higher void volume for Li2O2 formation than that of theN-GMelectrode. N-PGMalso exhibits improved decomposition kinetics for Li oxide
species yielded in the cathodic reaction. Charge and discharge measurements showed that theN-PGM lithium-air battery achieved an improved specific capacity and an enhanced cycle performance than when anN-GMelectrode is used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a comprehensive investigation of the quantum capacitance and the associated effects on the carrier transit delay in armchair-edge graphene nanoribbons (A-GNRs) based on semi-analytical method. We emphasize on the realistic analysis of bandgap with taking edge effects into account by means of modified tight binding (TB) model. The results show that the edge effects have significant influence in defining the bandgap which is a necessary input in the accurate analyses of capacitance. The quantum capacitance is discussed in both nondegenerate (low gate voltage) and degenerate (high gate voltage) regimes. We observe that the classical capacitance limits the total gate (external) capacitance in the degenerate regime, whereas, quantum capacitance limits the external gate capacitance in the nondegenerate regime. The influence of gate capacitances on the gate delay is studied extensively to demonstrate the optimization of switching time. Moreover, the high-field behavior of a GNR is studied in the degenerate and nondegenerate regimes. We find that a smaller intrinsic capacitance appears in the channel due to high velocity carrier, which limits the quantum capacitance and thus limit the gate delay. Such detail analysis of GNRs considering a realistic model would be useful for the optimized design of GNR-based nanoelectronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of superhydrophobic and superoleophilic microwrinkled reduced graphene oxide (MWrGO) structures is here demonstrated for oil spill cleanup. The impact of the thickness of MWrGO films on the sorption performance of three different oils was investigated. Water contact angles across the MWrGO surfaces were found to exceed 150°, while oil could be easily absorbed by the microwrinkled structures of MWrGO within seconds after contact. Although the oil surface diffusion rate was not found to be dependent on the thickness of the graphene oxide films, the oil sorption capacity was the largest with the thinner MWrGO films due to the high surface area resulting from their fine surface texture. Furthermore, the composite films can be repeatedly used for at least 20 oil sorption-removal cycles without any notable loss in selectivity and uptake capacity. These MWrGO/elastomer composite films could be applied as a potential candidate material for future oil spill cleanup.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of electrically conducting fibers based on known cytocompatible materials is of interest to those engaged in tissue regeneration using electrical stimulation. Herein, it is demonstrated that with the aid of rheological insights, optimized formulations of graphene containing spinnable poly(lactic-co-glycolic acid) (PLGA) dopes can be made possible. This helps extend the general understanding of the mechanics involved in order to deliberately translate the intrinsic superior electrical and mechanical properties of solution-processed graphene into the design process and practical fiber architectural engineering. The as-produced fibers are found to exhibit excellent electrical conductivity and electrochemical performance, good mechanical properties, and cellular affinity. At the highest loading of graphene (24.3 wt%), the conductivity of as-prepared fibers is as high as 150 S m-1 (more than two orders of magnitude higher than the highest conductivity achieved for any type of nanocarbon-PLGA composite fibers) reported previously. Moreover, the Young's modulus and tensile strength of the base fiber are enhanced 647- and 59-folds, respectively, through addition of graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large-scale, high-powered energy storage system is crucial for addressing the energy problem. The development of high-performance materials is a key issue in realizing the grid-scale applications of energy-storage devices. In this work, we describe a simple and scalable method for fabricating hybrids (graphenepyrrole/ carbon nanotube-polyaniline (GPCP)) using graphene foam as the supporting template. Graphene-pyrrole (G-Py) aerogels are prepared via a green hydrothermal route from two-dimensional materials such as graphene sheets, while a carbon nanotube/polyaniline (CNT/PANI) composite dispersion is obtained via the in situ polymerization method. The functional nanohybrid materials of GPCP can be assembled by simply dipping the prepared G-py aerogels into the CNT/PANI dispersion. The morphology of the obtained GPCP is investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed that the CNT/PANI was uniformly deposited onto the surfaces of the graphene. The as-synthesized GPCP maintains its original three-dimensional hierarchical porous architecture, which favors the diffusion of the electrolyte ions into the inner region of the active materials. Such hybrid materials exhibit significant specific capacitance of up to 350 F g-1, making them promising in large-scale energy-storage device applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent discovery of liquid crystalline (LC) behavior of graphene oxide (GO) dispersions in various organic, and aqueous media brings added control to the assembly of larger structures using the chemical process approach.[1-3] The LC state can be used to direct the ordered assembly of nanocomponents in macroscopic structures via simple methods like wet-spinning. [3] Here, we developed a scaleable fabrication route to produce graphene fibers via a facile continuoes wetspinning methode. We develop solid understanding in the required criteria to correlate processability with LC behavior, aspect ratio and the dispersion concentration to provide a viable platform for spinning of LC GO. We demonstrate a striking result that highlits the importance of GO sheet size and polydispersity in generating wetspinnable LC GO dispersions from very low spinning dope concentrations (as low as 0.075 wt. %). The new knowledge gained through rheological investigations provides a sound explanation as to why continuous spinning of binder-free GO fibers is enabled by the LC behavior at this very low concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developing synthetic methods for graphene based cathode materials, with low cost and in an environmentally friendly way, is necessary for industrial production. Although the precursor of graphene is abundant on the earth, the most common precursor of graphene is graphene oxide (GO), and it needs many steps and reagents for transformation to graphite. The traditional approach for the synthesis of GO needs many chemicals, thus leading to a high cost for production and potentially great amounts of damage to the environment. In this study, we develop a simple wet ball-milling method to construct a V2O5/graphene hybrid structure in which nanometre-sized V2O5 particles/aggregates are well embedded and uniformly dispersed into the crumpled and flexible graphene sheets generated by in situ conversion of bulk graphite. The combination of V2O5 nanoparticles/aggregates and in situ graphene leads the hybrid to exhibit a markedly enhanced discharge capacity, excellent rate capability, and good cycling stability. This study suggests that nanostructured metal oxide electrodes integrated with graphene can address the poor cycling issues of electrode materials that suffer from low electronic and ionic conductivities. This simple wet ball-milling method can potentially be used to prepare various graphene based hybrid electrodes for large scale energy storage applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocomposites of polypropylene (PP) and polypropylene/styrene-(ethylene-co-butylene)-styrene triblock copolymer (SEBS) blends with exfoliated graphene nanoplatelets (xGnP) were prepared by melt-mixing method. The incorporation of xGnP increased the stiffness and crystallinity of PP at the expense of toughness and the molecular mobility. The effect of addition of SEBS on the mechanical, viscoelastic, thermal degradation and crystallization properties of PP/xGnP composites was studied. The addition of SEBS into PP transformed the phase structure and distribution of xGnP in the PP matrix. SEM micrographs revealed that SEBS polymer chains formed a coating over the graphene nanoplatelets, which strengthened the interface between the filler and the matrix, and improved the dispersion and distribution of the filler throughout the matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 The application of graphene based materials in the area of stretchable electronics has driven enormous attention, especially in terms of the design of stretchable structures. This thesis has finely tuned the synthesis process of reduced graphene oxide (rGO), focused on the introduction of a thermo-mechanical shrinking process to fabricate wrinkled rGO structure as stretchable conductors and finally presented another potential application of wrinkled rGO structure.