116 resultados para Cold rolling


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the friction and deformation-induced heating that occurs during the stamping of high strength sheet steels, under room temperature conditions. A thermo-mechanical finite element model of a typical plane strain stamping process was developed to understand the temperature conditions experienced within the die and blank material; and this was validated against experimental measurements. A high level of correlation was achieved between the finite element model and experimental data for a range of operating conditions and parameters. The model showed that the heat generated during realistic production conditions can result in high temperatures of up to 108 °C and 181 °C in the blank and die materials, respectively, for what was traditionally expected to be 'cold' forming conditions. It was identified that frictional heating was primarily responsible for the peak temperatures at the die surface, whilst the peak blank temperatures were caused by a combination of frictional and deformation induced heating. The results provide new insights into the local conditions within the blank and die, and are of direct relevance to sheet formability and tool wear performance during industrial stamping processes. © 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen doped SnO2 polycrystalline nanostructures were produced from commercial SnO powders in a new system that combines a low-temperature plasma with heating. The method has the potential to improve the initial efficiency and the cycling performance of SnO2 anodes in Li-ion batteries. With this system, the temperature of the SnO to SnO2 conversion was lowered from 430 to 320 °C, up to 5 at% of doped nitrogen was detected and a nano-scale polycrystalline structure was observed in the product. Combining heat and low-pressure plasma is a promising approach for the production and treatment of enhanced energy storage materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the work is development of industry guidance concerning production of ultrafine-grained (UFG) High Strength Low Alloy (HSLA) steels using strain-induced dynamic phase transformations during advanced thermomechanical processing. In the first part of the work, the effect of processing parameters on the grain refinement was studied. Based on the obtained results, a multiscale computer model was developed in the second part of the work that was subsequently used to predict the mechanical response of studied structures. As an overall outcome, a process window was established for the production of UFG steels that can be adopted in existing hot rolling mills. © 2014 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, an artificial neural network model is proposed to predict the flow stress variations during the hot rolling process. Optimization of the proposed neural network with respect to number of neurons within the hidden layer, different training methods and transfer functions of the neural network is performed. The results of the optimal network were compared with those of the conventional analytic method and it is shown that using an optimal neural network the mean calculated error is drastically reduced.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the question of whether physiological flexibility in relation to climate is a general feature of the metabolic properties of birds. We tested this hypothesis in hand-raised Garden Warblers (Sylvia borin), long-distance migrants, which normally do not experience great temperature differences between summer and winter. We maintained two groups of birds under cold and warm conditions for 5 months, during which their body mass and food intake were monitored. When relatedness (siblings vs. non-siblings) of the experimental birds was taken into account, body mass in cold-acclimated birds was higher than in warm-acclimated birds. BMR, measured at the end of the 5-month temperature treatment, was also higher in the cold- than the warm-acclimated group. Migrant birds thus seem to be capable of the same metabolic cold-acclimation response as has been reported in resident birds. The data support the hypothesis that physiological flexibility is a basic trait of the metabolic properties of birds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An equiaxed ultrafine-grained (UFG) microstructure was successfully produced in a Ti-6Al-4V alloy with an average grain size of 110-230. nm through symmetric and asymmetric warm rolling of a martensitic starting microstructure. The UFG material displayed a combination of ultrahigh strength and ductility at room temperature. Compared with the conventional symmetric rolling, the asymmetric rolling process led to a more pronounced effect of microstructure refinement and a higher tensile ductility. The optimum mechanical response was obtained though the asymmetric rolling at 70% reduction, offering an ultimate tensile strength of 1365. MPa and a total elongation of ~23%. Apart from the magnitude of grain refinement, the inclination of basal texture component from the normal towards the rolling direction during asymmetric rolling and possible strain induced β to martensite transformation may concurrently contribute to a remarkable tensile strength-ductility balance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti and Ti-based alloys have unique properties such as high strength, low density and excellent corrosion resistance. These properties are essential for the manufacture of lightweight and high strength components for biomedical applications. In this paper, Ti properties such as metallurgy, mechanical properties, surface modification, corrosion resistance, biocompatibility and osseointegration in biomedical applications have been discussed. This paper also analyses the advantages and disadvantages of various Ti manufacturing processes for biomedical applications such as casting, powder metallurgy, cold and hot working, machining, laser engineering net shaping (LEN), superplastic forming, forging and ring rolling. The contributions of this research are twofold, firstly scrutinizing the behaviour of Ti and Ti-based alloys in-vivo and in-vitro experiments in biomedical applications to determine the factors leading to failure, and secondly strategies to achieve desired properties essential to improving the quality of patient outcomes after receiving surgical implants. Future research will be directed toward manufacturing of Ti for medical applications by improving the production process, for example using optimal design approaches in additive manufacturing and investigating alloys containing other materials in order to obtain better medical and mechanical characteristics.