121 resultados para CONDUCTING NANOWIRES


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general method for the generation of two-dimensional (2D) ordered, large-area, and liftable conducting polymer-nanobowl sheet has been demonstrated via chemical polymerization for the first time. The sheet is made using the monolayer self-assembled from polystyrene (PS) spheres at the aqueous/air interface as template, followed by depositing conducting polymer on the part of PS monolayer submerging in the aqueous phase via chemical polymerization, and core extraction. During the process of polymerization, no substrate is required, which caused the as-prepared patterned conducting polymer sheet can be easily lifted-off and deposited, in full size, on any flat substrate. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectrum were used to characterize the products

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pediatric palliative care randomized controlled trials (PPC-RCTs) are uncommon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-energy efficient method is developed for the synthesis of LiFePO4@CNT core-shell nanowire structures. The method consists of two steps: liquid deposition approach to prepare FePO4@CNT core-shell nanowires and solvothermal lithiation to obtain the LiFePO4@CNT core-shell nanowires at a low temperature. The solution phase method can be easily scaled up for commercial application. The performance of the materials produced by this method is evaluated in Li ion batteries. The one-dimensional LiFePO4@CNT nanowires offer a stable and efficient backbone for electron transport. The LiFePO4@CNT core-shell nanowires exhibit a high capacity of 132.8 mAh g-1 at a rate of 0.2C, as well as high rate capability (64.4 mAh g-1 at 20C) for Li ion storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identification of extracellular conductive pilus-like structures (PLS) i.e. microbial nanowires has spurred great interest among scientists due to their potential applications in the fields of biogeochemistry, bioelectronics, bioremediation etc. Using conductive atomic force microscopy, we identified microbial nanowires in Microcystis aeruginosa PCC 7806 which is an aerobic, photosynthetic microorganism. We also confirmed the earlier finding that Synechocystis sp. PCC 6803 produces microbial nanowires. In contrast to the use of highly instrumented continuous flow reactors for Synechocystis reported earlier, we identified simple and optimum culture conditions which allow increased production of nanowires in both test cyanobacteria. Production of these nanowires in Synechocystis and Microcystis were found to be sensitive to the availability of carbon source and light intensity. These structures seem to be proteinaceous in nature and their diameter was found to be 4.5-7 and 8.5-11 nm in Synechocystis and M. aeruginosa, respectively. Characterization of Synechocystis nanowires by transmission electron microscopy and biochemical techniques confirmed that they are type IV pili (TFP) while nanowires in M. aeruginosa were found to be similar to an unnamed protein (GenBank : CAO90693.1). Modelling studies of the Synechocystis TFP subunit i.e. PilA1 indicated that strategically placed aromatic amino acids may be involved in electron transfer through these nanowires. This study identifies PLS from Microcystis which can act as nanowires and supports the earlier hypothesis that microbial nanowires are widespread in nature and play diverse roles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We sought to evaluate the feasibility of conducting a randomized trial to evaluate the efficacy of a preschool/kindergarten curriculum intervention designed to increase 4-year-old children's knowledge of healthy eating, active play and the sustainability consequences of their food and toy choices. Ninety intervention and 65 control parent/child dyads were recruited. We assessed the study feasibility by examining recruitment and participation, completion of data collection, realization of the intervention and early childhood educators’ experiences of implementing the study protocol; our findings suggest the intervention was feasible to deliver. In addition, children's sustainability awareness of non-compostable and recyclable items increased. Children in the intervention group significantly reduced their sugary drink consumption and increased their vegetable intake at follow-up compared to control. We conclude with recommendations for revisions to the child interview and parent questionnaire delivery to ensure the roll out of the randomized trial is conducted efficiently and rigorously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular pili-like structures (PLS) produced by cyanobacteria have been poorly explored. We have done detailed topographical and electrical characterisation of PLS in Nostoc punctiforme PCC 73120 using transmission electron microscopy (TEM) and conductive atomic force microscopy (CAFM). TEM analysis showed that N. punctiforme produces two separate types of PLS differing in their length and diameter. The first type of PLS are 6-7.5 nm in diameter and 0.5-2 µm in length (short/thin PLS) while the second type of PLS are ~20-40 nm in diameter and more than 10 µm long (long/thick PLS). This is the first study to report long/thick PLS in N. punctiforme. Electrical characterisation of these two different PLS by CAFM showed that both are electrically conductive and can act as microbial nanowires. This is the first report to show two distinct PLS and also identifies microbial nanowires in N. punctiforme. This study paves the way for more detailed investigation of N. punctiforme nanowires and their potential role in cell physiology and symbiosis with plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of electrically conducting fibers based on known cytocompatible materials is of interest to those engaged in tissue regeneration using electrical stimulation. Herein, it is demonstrated that with the aid of rheological insights, optimized formulations of graphene containing spinnable poly(lactic-co-glycolic acid) (PLGA) dopes can be made possible. This helps extend the general understanding of the mechanics involved in order to deliberately translate the intrinsic superior electrical and mechanical properties of solution-processed graphene into the design process and practical fiber architectural engineering. The as-produced fibers are found to exhibit excellent electrical conductivity and electrochemical performance, good mechanical properties, and cellular affinity. At the highest loading of graphene (24.3 wt%), the conductivity of as-prepared fibers is as high as 150 S m-1 (more than two orders of magnitude higher than the highest conductivity achieved for any type of nanocarbon-PLGA composite fibers) reported previously. Moreover, the Young's modulus and tensile strength of the base fiber are enhanced 647- and 59-folds, respectively, through addition of graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective functional innervation of medical bionic devices, as well as re-innervation of target tissue in nerve and spinal cord injuries, requires a platform that can stimulate and orientate neural growth. Gordon Wallace and co-workers report on p. 4393 that conducting and nonconducting biodegradable polymers show excellent potential as suitable hybrid substrata for neural regeneration and may form the basis of electrically active conduits designed to accelerate nerve repair.