155 resultados para social responses to elderly.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both physical and psychological stressors recruit catecholamine cells (CA) located in the ventrolateral medulla (VLM) and the nucleus of the solitary tract (NTS). In the case of physical stressors, this effect is initiated by signals that first access the central nervous system at or below the level of the medulla. For psychological stressors, however, CA cell recruitment depends on higher structures within the neuraxis. Indeed, we have recently provided evidence of a pivotal role for the medial amygdala (MeA) in this regard, although such a role must involve a relay, as MeA neurons do not project directly to the medulla. However, some of the MeA neurons that respond to psychological stress have been found to project to the hypothalamic paraventricular nucleus (PVN), a structure that provides significant input to the medulla. To determine whether the PVN might regulate medullary CA cell responses to psychological stress, animals were prepared with unilateral injections of the neurotoxin ibotenic acid into the PVN (Experiment 1), or with unilateral injections of the retrograde tracer wheat germ agglutinin-gold (WGA-Au) into the CA cell columns of the VLM or NTS (Experiment 2). Seven days later, animals were subjected to a psychological stressor (restraint; 15 minutes), and their brains were subsequently processed for Fos plus appropriate cytoplasmic markers (Experiment 1), or Fos plus WGA-Au (Experiment 2). PVN lesions significantly suppressed the stress-related induction of Fos in both VLM and NTS CA cells, whereas tracer deposits in the VLM or NTS retrogradely labeled substantial numbers of PVN cells that were also Fos-positive after stress. Considered in concert with previous results, these data suggest that the activation of medullary CA cells in response to psychological stress may involve a critical input from the PVN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypothalamic–pituitary–adrenal axis activation is a hallmark of the stress response. In the case of physical stressors, there is considerable evidence that medullary catecholamine neurones are critical to the activation of the paraventricular nucleus corticotropin-releasing factor cells that constitute the apex of the hypothalamic–pituitary–adrenal axis. In contrast, it has been thought that hypothalamic–pituitary–adrenal axis responses to emotional stressors do not involve brainstem neurones. To investigate this issue we have mapped patterns of restraint-induced neuronal c-fos expression in intact animals and in animals prepared with either paraventricular nucleus-directed injections of a retrograde tracer, lesions of paraventricular nucleus catecholamine terminals, or lesions of the medulla corresponding to the A1 or A2 noradrenergic cell groups. Restraint-induced patterns of neuronal activation within the medulla of intact animals were very similar to those previously reported in response to physical stressors, including the fact that most stressor-responsive, paraventricular nucleus-projecting cells were certainly catecholaminergic and probably noradrenergic. Despite this, the destruction of paraventricular nucleus catecholamine terminals with 6-hydroxydopamine did not alter corticotropin-releasing factor cell responses to restraint. However, animals with ibotenic acid lesions encompassing either the A1 or A2 noradrenergic cell groups displayed significantly suppressed corticotropin-releasing factor cell responses to restraint. Notably, these medullary lesions also suppressed neuronal responses in the medial amygdala, an area that is now considered critical to hypothalamic–pituitary–adrenal axis responses to emotional stressors and that is also known to display a significant increase in noradrenaline turnover during restraint.

We conclude that medullary neurones influence corticotropin-releasing factor cell responses to emotional stressors via a multisynaptic pathway that may involve a noradrenergic input to the medial amygdala. These results overturn the idea that hypothalamic–pituitary–adrenal axis response to emotional stressors can occur independently of the brainstem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Psychological stressors trigger the activation of medullary noradrenergic cells, an effect that has been shown to depend upon yet-to-be-identified structures located higher in the brain. To test whether the amygdala is important in this regard, we examined the effects of amygdala lesions on noradrenergic cell responses to restraint, and also looked at whether any amygdala cells that respond to restraint project directly to the medulla. Ibotenic acid lesions of the medial amygdala completely abolished restraint-induced Fos expression in A1 and A2 noradrenergic cells. In contrast, lesions of the central amygdala actually facilitated noradrenergic cell responses to restraint. Tracer deposits in the dorsomedial (but not ventrolateral) medulla retrogradely labelled many cells in the central nucleus of the amygdala, but none of these cells expressed Fos in response to restraint. These data suggest for the first time that the medial amygdala is critical to the activation of medullary noradrenergic cells by a psychological stressor whereas the central nucleus exerts an opposing, inhibitory influence upon noradrenergic cell recruitment. The initiation of noradrenergic cell responses by the medial amygdala does not involve a direct projection to the medulla. Accordingly, a relay through some other structure, such as the hypothalamic paraventricular nucleus, warrants careful consideration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apomorphine is a dopamine receptor agonist that was recently licensed for the treatment of erectile dysfunction. However, although sexual activity can be stressful, there has been little investigation into whether treatments for erectile dysfunction affect stress responses. We have examined whether a single dose of apomorphine, sufficient to produce penile erections (50 μg/kg, i.a.), can alter basal or stress-induced plasma ACTH levels, or activity of central pathways thought to control the hypothalamic-pituitary-adrenal axis in rats. An immune challenge (interleukin-1β, 1 μg/kg, i.a.) was used as a physical stressor while sound stress (100 dB white noise, 30 min) was used as a psychological stressor. Intravascular administration of apomorphine had no effect on basal ACTH levels but did substantially increase the number of Fos-positive amygdala and nucleus tractus solitarius catecholamine cells. Administration of apomorphine prior to immune challenge augmented the normal ACTH response to this stressor at 90 min and there was a corresponding increase in the number of Fos-positive paraventricular nucleus corticotropin-releasing factor cells, paraventricular nucleus oxytocin cells and nucleus tractus solitarius catecholamine cells. However, apomorphine treatment did not alter ACTH or Fos responses to sound stress. These data suggest that erection-inducing levels of apomorphine interfere with hypothalamic-pituitary-adrenal axis inhibitory feedback mechanisms in response to a physical stressor, but have no effect on the response to a psychological stressor. Consequently, it is likely that apomorphine acts on a hypothalamic-pituitary-adrenal axis control pathway that is unique to physical stressors. A candidate for this site of action is the nucleus tractus solitarius catecholamine cell population and, in particular, A2 noradrenergic neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thalamic paraventricular nucleus (PVT) is activated by stress and projects to forebrain structures directly implicated in processing stress-related information. Accordingly, it seems likely the PVT plays an important role in modulating stress responses. We examined effects of excitotoxic PVT lesions on forebrain Fos expression patterns normally elicited by an acute psychological stressor. PVT lesions significantly increased stress-induced Fos in a key stress-processing region, the central amygdala.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim:  Production of reactive oxygen species (ROS) in skeletal muscle is markedly increased during exercise and may be essential for exercise adaptation. We, therefore, investigated the effects of infusion with the antioxidant N-acetylcysteine (NAC) on exercise-induced activation of signalling pathways and genes involved in exercise adaptation in human skeletal muscle.

Methods:  Subjects completed two exercise tests, 7 days apart, with saline (control, CON) or NAC infusion before and during exercise. Exercise tests comprised of cycling at 71%inline image2peak for 45 min, and then 92% \dot{{V}}\hbox{O}2peak to fatigue, with vastus lateralis biopsies at pre-infusion, after 45-min cycling and at fatigue.

Results:  Analysis was conducted on the mitogen-activated protein kinase signalling pathways, demonstrating that NAC infusion blocked the exercise-induced increase in JNK phosphorylation, but not ERK1/2, or p38 MAPK. Nuclear factor-κB p65 phosphorylation was unaffected by exercise; however, it was reduced in NAC at fatigue by 14% (P < 0.05) compared with pre-infusion. Analysis of exercise and/or ROS-sensitive genes demonstrated that exercise-induced mRNA expression is ROS dependent of MnSOD, but not PGC-1α, interleukin-6, monocyte chemotactic protein-1, or heat-shock protein 70.

Conclusion:  These results suggest that inhibition of ROS attenuates some skeletal muscle cell signalling pathways and gene expression involved in adaptations to exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simple ecological models that predict trophic responses to bottom-up forcing are valuable tools for ecosystem managers. Traditionally, theoretical ecologists have used resource-dependent functional responses to explain the modification of food chains exposed to bottom-up perturbations. These models predict alternating positive, negative and zero responses at each trophic level. More recently, ratio-dependent functional response models that predict proportional increases at each level have challenged this paradigm. The present study tested the predictions of the 2 hypotheses empirically by comparing the relative biomasses of 4 trophic levels of an estuarine seagrass food chain in relatively undisturbed, low-nutrient catchments and ‘developed’ catchments subjected to a prolonged period of nutrient enrichment. We found that nutrient-enriched sites had significantly greater biomass of both epiphytic algae and grazing invertebrates; however, the bottom-up forcing of nutrients was attenuated at higher trophic levels (occupied by juvenile and piscivorous fish), with no significant effect of catchment development. This disconnect in the upward cascade of energy may be due to a number of possible reasons including high levels of diversity and omnivory, trophic subsidy within the system or the strength or nature of perturbations. Although the predictions of both hypotheses failed to hold across all trophic groups, ratio dependence was prevalent at the lower levels of the food chain, which has implications for catchment management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Patch area and proximity of patch edge can influence ecological processes across patchy landscapes and may interact with each other. Different patch sizes have different amounts of core habitat, potentially affecting animal abundances at the edge and middle of patches. In this study, we tested if edge effects varied with patch size.

2. Fish were sampled in 10 various-sized seagrass patches (114–5934 m2) using a small (0·5 m2) push net in three positions within each patch: the seagrass edge, 2 m into a patch and in the middle of a patch.

3. The two most common species showed an interaction between patch size and the edge–interior difference in abundance. In the smallest patches, pipefish (Stigmatopora nigra) were at similar densities at the edge and interior, but with increasing patch size, the density at the edge habitat increased. For gobies (Nesogobius maccullochi), the pattern was exactly the opposite.

4. This is the first example from a marine system of how patch size can influence the magnitude and pattern of edge effects.

5. Both patch area and edge effects need to be considered in the development of conservation and management strategies for seagrass habitats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surviving prolonged fasting implies closely regulated alterations in fuel provisioning to meet metabolic requirements, while preserving homeostasis. Little is known, however, of the endocrine regulations governing such metabolic adaptations in naturally fasting free-ranging animals. The hormonal responses to natural prolonged fasting and how they correlate to the metabolic adaptations observed, were investigated in subantarctic fur seal (Arctocephalus tropicalis) pups, which, because of the intermittent pattern of maternal attendance, repeatedly endure exceptionally long fasting episodes throughout their development (1–3 mo). Phase I fasting was characterized by a dramatic decrease in plasma insulin, glucagon, leptin, and total L-thyroxine (T4) associated with reductions in mass-specific resting metabolic rate (RMR), plasma triglycerides, glycerol, and urea-to-creatine ratio, while nonesterified fatty acids (NEFA) and β-OHB increased. In contrast, the metabolic steady-state of phase II fasting reached within 6 days was associated with minimal concentrations of insulin, glucagon, and leptin; unchanged cortisol and triiodothyronine (T3); and moderately increased T4. The early fall in insulin and leptin may mediate the shift to the strategy of energy conservation, protein sparing, and primary reliance on body lipids observed in response to the cessation of feeding. In contrast to the typical mammalian starvation response, nonelevated cortisol and minimal glucagon levels may contribute to body protein preservation and downregulation of catabolic pathways, in general. Furthermore, thyroid hormones may be involved in a process of energy conservation, independent of pups' nutritional state. These original hormonal settings might reflect an adaptation to the otariid repeated fasting pattern and emphasize the crucial importance of a tight physiological control over metabolism to survive extreme energetic constraints.