102 resultados para nanocrystalline metals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Persistent environmental pollutants, including heavy metals and persistent organic pollutants (POPs), have a ubiquitous presence. Many of these pollutants affect neurobiological processes, either accidentally or by design. The aim of this study was to explore the associations between assayed measures of POPs and heavy metals and depressive symptoms. We hypothesised that higher levels of pollutants and metals would be associated with depressive symptoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developing water quality guidelines for Antarctic marine environments requires understanding the sensitivity of local biota to contaminant exposure. Antarctic invertebrates have shown slower contaminant responses in previous experiments compared to temperate and tropical species in standard toxicity tests. Consequently, test methods which take into account environmental conditions and biological characteristics of cold climate species need to be developed. This study investigated the effects of five metals on the survival of a common Antarctic amphipod, Orchomenella pinguides. Multiple observations assessing mortality to metal exposure were made over the 30 days exposure period. Traditional toxicity tests with quantal data sets are analysed using methods such as maximum likelihood regression (probit analysis) and Spearman–Kärber which treat individual time period endpoints independently. A new statistical model was developed to integrate the time-series concentration–response data obtained in this study. Grouped survival data were modelled using a generalized additive mixed model (GAMM) which incorporates all the data obtained from multiple observation times to derive time integrated point estimates. The sensitivity of the amphipod, O. pinguides, to metals increased with increasing exposure time. Response times varied for different metals with amphipods responding faster to copper than to cadmium, lead or zinc. As indicated by 30 days lethal concentration (LC50) estimates, copper was the most toxic metal (31 µg/L), followed by cadmium (168 µg/L), lead (256 µg/L) and zinc (822 µg/L). Nickel exposure (up to 1.12 mg/L) did not affect amphipod survival. Using longer exposure durations and utilising the GAMM model provides an improved methodology for assessing sensitivities of slow responding Antarctic marine invertebrates to contaminants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atmospheric quality and distribution of heavy metals were evaluated throughout a wide region of Argentina. In addition, the biomonitor performance of Tillandsia capillaris Ruiz & Pav. f. capillaris was studied in relation to the accumulation of heavy metals and to its physiologic response to air pollutants. A sampling area of 50,000 km2 was selected in the central region of the Argentine Republic. This area was subdivided into grids of 25 x 25 km. Pools of T. capillaris, where present, were collected at each intersection point. From each pool three sub-samples were analyzed independently. Furthermore, five replicates were collected at 20% of the points in order to analyze the variability within the site. The content of Co, Cu, Fe, Ni, Mn, Pb and Zn was determined by Atomic Absorption Spectrometry. Chemical-physiological parameters were also determined to detect symptoms of foliar damage. Chlorophylls, phaeophytins, hydroperoxy conjugated dienes, malondialdehyde and sulfur were quantified in T. capillaris. Some of these parameters were used to calculate a foliar damage index. Data sets were evaluated by one-way ANOVA, correlation analysis, principal component analysis and mapping. Geographical distribution patterns were obtained for the different metals reflecting the contribution of natural and anthropogenic emission sources. According to our results it can be inferred that Fe, Mn and Co probably originated in the soil. For Pb, the highest values were found in the mountainous area, which can be attributed to the presence of Pb in the granitic rocks. Ni showed mainly an anthropogenic origin, with higher values found in places next to industrial centers. For Zn the highest values were in areas of agricultural development. The same was observed for Cu, whose presence could be related to the employment of pesticides. The foliar damage index distribution map showed that the central and southeastern zones were the ones where the major damage in the bioindicator was found. The central zone coincides with the city of Córdoba whereas the southeastern area is strictly agricultural, so the high values found there could be related to the use of pesticides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 In some advanced sheet metal forming processes such as the incremental forming process, a local fracture strain after necking is very important. In order to accurately predict necking and fracture phenomena, a crystal plasticity model is introduced in the finite element analysis of tensile tests. A tensile specimen is modeled by many grains that have their own crystalline orientation. And each of the grains is discretized by many elements. Using this analysis, necking behavior of a tensile specimen can be predicted without any initial imperfections. A damage model is also implemented to predict sudden drops of load carrying capacity after necking and to reflect the void nucleation and growth of the severely deformed region. From an analysis of the tensile test, the necking behavior is well predicted. Finally, analyses are carried out for various strain paths, and FLDs up to necking and fracture are predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolomics may be defined as the comprehensive quantitative and/or qualitative analysis of all metabolites present in a bio-fluid, cell, tissue, or organism. It is essentially the study of biochemical phenotypes (or metabotypes). Metabolic profiles are context dependent, and vary in response to a variety of factors including environment and environmental stimuli, health status, disease and a myriad of other factors; as such, metabolomics has been applied to a wide range of fields and has been increasingly utilised to the study of the roles played by metals in a range of biological systems as well as, encouragingly, in understanding the underlying biochemical mechanisms. The role of metals (and metalloids) in biological organisms is complex and the majority of studies in this area have been performed in plants but the fields of natural product chemistry, human health and even bacterial corrosion of water distribution systems have been investigated using this technique. In this review some of the novel approaches in which the metabolomics toolbox has been used to unravel the roles of metals and metalloids in a range of biological systems are discussed and suggestions made for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 A constitutive model based on Non-Associated Flow rule is implemented numerically and is shown to be capable of accurate predictions of anisotropy driven phenomena, observed during the forming processes of thin sheet metals, in a more efficient manner than other traditional approaches based on Associated Flow Rule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2014 The Textile Institute. This study intends to enhance the functionality of titanium dioxide (TiO2) nanoparticles applied to wool fabrics under visible light. Herein, TiO2, TiO2/SiO2, TiO2/Metal, and TiO2/Metal/SiO2 nanocomposite sols were synthesized and applied to wool fabrics through a low-temperature sol–gel method. The impacts of three types of noble metals, namely gold (Au), platinum (Pt), and silver (Ag), on the photoefficiency of TiO2 and TiO2/SiO2 under visible light were studied. Different molar ratios of Metal toTiO2 (0.01, 0.1, 0.5, and 1%) were employed in synthesizing the sols. Photocatalytic efficiency of fabrics was analyzed through monitoring the removal of red wine stain and degradation of methylene blue under simulated sunlight and visible light, respectively. Also, the antimicrobial activity against Escherichia coli (E. coli) bacterium and the mechanical properties of fabrics were investigated. Through applying binary and ternary nanocomposite sols to fabrics, an enhanced visible-light-induced self-cleaning property was imparted to wool fabrics. It was concluded that the presence of silica and optimized amount of noble metals had a synergistic impact on boosting the photocatalytic and antimicrobial activities of coated samples. The fabrics were further characterized using attenuated total reflectance, energy-dispersive X-ray spectrometry, and scanning electron microscopy images.