110 resultados para magnesium casting alloys


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The idea of bioabsorbable/biocorrodible stents has gained increasing attention in the last decade. Permanent coronary stents, traditionally made from 316L grade stainless steel, are routinely used for the treatment of blocked arteries. However, these stents can cause complications such as restenosis, thrombosis and the need for the patient to undergo prolonged antiplatelet therapy. Biodegradable metal stents provide an opportunity for the stent to remain in place for a period to ensure restoration of function and then degrade through a carefully controlled bio-corrosion process. Among the number of potentially suitable materials, Magnesium alloys have shown great promise as a stent material due to their non-toxicity [1] and the corrosion rates attainable in biological environments. However, a carefully controlled corrosion process is essential in order to avoid hyper hydrogen generation and the fatal consequences that follow. In addition uniform corrosion is a basic requirement to maintain the mechanical integrity and load bearing characteristics. Work being undertaken in our laboratories focuses on controlling the corrosion behaviour of magnesium in a simulated biological environment in the presence of protein. In the investigation reported here the Mg alloy has been examined using Scanning Electrochemical Microscope (SECM) to visualize the corrosion process and identify the corrosion pattern. Complementary bulk electrochemical techniques (EIS and potentiodynamic polarization) have been used to acquire kinetic and mechanistic information. Early results obtained by SECM have revealed the tendency towards pitting corrosion in the early stages which subsequently develops in to filiform corrosion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Additions of rare earth elements to magnesium alloys are qualitatively reported in the literature to retard recrystallisation. However, their effect in the presence of other (non-rare earth) alloy additions has not been systematically shown nor has the effect been quantified. The microstructural restoration following the hot deformation of Mg-xZn-yRE (x = 2.5 and 5 wt.%, y = 0 and 1 wt.%, and RE = Gd and Y) alloys has been studied using double hit compression testing and microscopy. It was found that, in the absence of rare earth additions, increases in zinc level had a negligible influence on the kinetics of restoration and the microstructure developed both during extrusion and throughout double hit testing. Adding rare earth elements to Mg-Zn alloys was found to retard restoration of the microstructure and maintain finer recrystallised grains. However, in the Mg-Zn-RE alloys, increasing the zinc concentration from 2.5 wt.% to 5 wt.% accelerated the restoration process, most likely due to a depletion of rare earth elements from solid solution and modification of the particles present in the matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effect of anisotropy in compression is studied on hot rolling of AZ31 magnesium alloy with a three-dimensional constitutive model based on the quadratic Hill48 yield criterion and nonassociated flow rule (non-AFR). The constitutive model is characterized by compressive tests of AZ31 billets since plastic deformations of materials are mostly caused by compression during rolling processes. The characterized plasticity model is implemented into ABAQUS/Explicit as a user-defined material subroutine (VUMAT) based on semi-implicit backward Euler's method. The subroutine is employed to simulate square-bar rolling processes. The simulation results are compared with rolled specimens and those predicted by the von Mises and the Hill48 yield function under AFR. Moreover, strip rolling is also simulated for AZ31 with the Hill48 yield function under non-AFR. The strip rolling simulation demonstrates that the lateral spread generated by the non-AFR model is in good agreement with experimental data. These comparisons between simulation and experiments validate that the proposed Hill48 yield function under non-AFR provides satisfactory description of plastic deformation behavior in hot rolling for AZ31 alloys in case that the anisotropic parameters in the Hill48 yield function and the non-associated flow rule are calibrated by the compressive experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work introduces a double inclusion elasto-plastic self-consistent (DI-EPSC) scheme for topologies in which crystals can contain subdomains (i.e. twins, etc.). The approach yields a direct coupling between the mechanical response of grains and their subdomains via a concentration relationship on mean fields derived from both the Eshelby and the Tanaka-Mori properties. The latent effect caused by twinning on the mechanical response is observed on both initially extruded and non-textured Mg alloys. For twinned grains, it is shown that deformation system activities and plastic strain distributions within twins drastically depend on the interaction with parent domains. Moreover, a quantitative study on the coupled influence of secondary slip activities on the material response is proposed. © 2014 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extruded Mg-Zn-RE alloys have been shown to exhibit excellent combinations of yield strength and ductility, but it is not completely clear how adding rare earth metals to Mg-Zn alters the microstructure and affects the mechanical properties. Microstructural changes and the resulting mechanical properties from changes in composition and extrusion temperature have been investigated for Mg-. x Zn-. y RE (. x=2.5 and 5. wt.%, y=0 and 1. wt. %, and RE=Gd and Y) alloys. Adding RE to Mg-Zn increased the strength and reduced the ductility, while increasing the zinc concentration in the Mg-Zn-RE alloys had the reverse effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plastic yielding in magnesium alloys frequently involves the initiation of both slip and twinning events. A proper understanding of the phenomenon at the grain level requires knowledge of how these two mechanisms progress and interact over both time and space and what the local resolved stresses are. To date, simultaneous collection of such information has not been achievable. To address this shortfall, we have developed a modified Laue based in situ micro X-ray diffraction technique with an unprecedented combination of time and spatial resolution. A ten-fold reduction in data collection times is realized by the refinement of rapid polychromatic Laue "single-shot" mapping. From single Laue patterns, we extract grain depth information, detect onset of yielding and achieve 2 × 10-4 lattice strain resolution. The technique is employed to examine yielding and twinning in a magnesium grain embedded ∼200 μm below the sample surface. We examine 13 time steps and reveal the following behaviour: initial onset of basal slip, subsequent onset of twinning, development of further accommodation slip and evolution of twin shape and size; along with the corresponding values of local resolved shear stresses. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our objective was to study the role of Collagen type-I (Col-I) coating on Magnesium-Zirconia (Mg-Zr) alloys, containing different quantities of Strontium (Sr), in enhancing the in vitro bioactivity and in vivo bone-forming and mineralisation properties of the implants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In situ neutron diffraction of two binary Mg alloys, Mg-0.5 wt.% Y and Mg-2.2 wt.% Y have been carried out in compression. The experimental data has been modelled using the elastoplastic self-consistent methodology in order to determine the critical resolved shear stress for basal slip, second-order 〈c + 〉 pyramidal slip and {101̄2} twinning. It was found that the addition of Y strengthens all three of the deformation modes examined. However, increasing the Y concentration from 0.5% to 2.2% showed no additional hardening in the basal slip and {101̄2} twinning modes, indicating that solute strengthening of these deformation modes is already exhausted by a concentration of 0.5% Y. Second-order pyramidal slip showed additional solute hardening at the higher concentration. © 2014 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five types of Mg-5Al alloys with different weight percentages of Zn ranging from 0 to 4 wt.% were examined using electrochemical techniques and surface analysis. The electrochemical results indicated that the Mg-5Al alloys containing Zn have a lower corrosion and hydrogen evolution rates than the Mg-5Al based specimens with a decrease of value being observed with the decrease in Zn content. Zn addition induced the precipitation of Mg-Al and Mg-Zn phases in the Mg matrix along with grain refinement and increased an interaction of Zn oxide with Mg and Al products serving as a corrosion barrier. © 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A laboratory-based transmission X-ray diffraction technique was developed to measure elastic lattice strains parallel to the loading direction during in situ tensile deformation. High-quality transmission X-ray diffraction data were acquired in a time frame suitable for in situ loading experiments by application of a polycapillary X-ray optic with a conventional laboratory Cu X-ray source. Based on the measurement of two standard reference materials [lanthanum hexaboride (NIST SRM 660b) and silicon (NIST SRM 640c)], precise instrumental alignment and calibration of the transmission diffraction geometry were realized. These results were also confirmed by the equivalent data acquired using the standard Bragg-Brentano measurement geometry. An empirical Caglioti function was employed to describe the instrumental broadening, while an axis of rotation correction was used to measure and correct the specimen displacement from the centre of the goniometer axis. For precise Bragg peak position and hkil intensity information, a line profile fitting methodology was implemented, with Pawley refinement used to measure the sample reference lattice spacings (d o (hkil)). It is shown that the relatively large X-ray probe size available (7 × 714mm) provides a relatively straightforward approach for improving the grain statistics for the study of metal alloys, where grain sizes in excess of 114μm can become problematic for synchrotron-based measurements. This new laboratory-based capability was applied to study the lattice strain evolution during the elastic-plastic transition in extruded and rolled magnesium alloys. A strain resolution of 2 × 10-4 at relatively low 2θ angles (20-65° 2θ) was achieved for the in situ tensile deformation studies. In situ measurement of the elastic lattice strain accommodation with applied stress in the magnesium alloys indicated the activation of dislocation slip and twin deformation mechanisms. Furthermore, measurement of the relative change in the intensity of 0002 and 10 3 was used to quantify {10 2} 011 tensile twin onset and growth with applied load.