116 resultados para low carbon steel


Relevância:

50.00% 50.00%

Publicador:

Resumo:

In situ neutron diffraction, transmission electron microscopy (TEM) and atom probe tomography (APT) have been used to study the early stages of bainite transformation in a 2 mass% Si nano-bainitic steel. It was observed that carbon redistribution between the bainitic ferrite and retained austenite at the early stages of the bainite transformation at low isothermal holding occurred in the following sequence: (i) formation of bainitic ferrite nuclei within carbon-depleted regions immediately after the beginning of isothermal treatment; (ii) carbon partitioning immediately after the formation of bainitic ferrite nuclei but substantial carbon diffusion only after 33 min of bainite isothermal holding; (iii) formation of the carbon-enriched remaining austenite in the vicinity of bainitic laths at the beginning of the transformation; (iv) segregation of carbon to the dislocations near the austenite/ferrite interface; and (v) homogeneous redistribution of carbon within the remaining austenite with the progress of the transformation and with the formation of bainitic ferrite colonies. Bainitic ferrite nucleated at internal defects or bainite/austenite interfaces as well as at the prior austenite grain boundary. Bainitic ferrite has been observed in the form of an individual layer, a colony of layers and a layer with sideplates at the early stages of transformation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the major challenges in assessing the mechanical properties of recovery annealed steel is the strain localization that occurs almost immediately on the formation of the first Lüders band, such that no or limited propagation of the Lüders band occurs along the tensile coupon. The stress raiser associated with the geometry of the standard tensile coupon means that this plastic deformation is often completely outside the standard extensometers on the coupon. Hence, no strain is measured during the test. While this is not important for assessing the tensile strength of the steel, it does mean that the strain related properties, such as the elastic limit of the steel, cannot be measured using standard testing techniques.This work addresses this issue by examining three techniques for ensuring that the strain occurs inside the extensometer. It is shown that the best technique is the extended extensometer, where the gauge length covers slightly more than the tensile coupon parallel length. While this leads to some variation in the width of the material being measured, compensation can be be made by adjusting the strain to correct the Young's Modulus.This technique has direct implications not just for recovery annealed steels, but for other high strength, low work hardening materials such as ultrafine ferrite. A particular requirement of these high strength steels in structural applications is a high elastic limit; hence, measurement of the strain related properties for these high strength materials must be considered vital in their mechanical assessment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The influence of low-strain deformation behavior on curl and springback in advanced high strength steels (AHSS) was assessed using a bend-under-tension test. The effect of yielding behavior on curl and springback was examined by heat-treating two dual-phase steels to induce yield point elongation, while keeping a relatively constant tensile strength and a constant sheet thickness. A dual-phase and TRIP steel with similar initial thickness and tensile strengths were also examined to investigate the effect of work-hardening on curl and springback. It is shown that while current understanding limits prediction of curl and springback in bending under tension using only the initial sheet thickness and tensile strength, both the yielding and work-hardening behavior can affect the results. Explanations for these effects are proposed in terms of the discontinuous yielding and flow stress in the materials.


Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The scope of this study was to examine the effects of plane strain prestrain, induced via cold-rolling, and subsequent automotive paint bake hardening cycle on both tensile and fatigue properties of a hot rolled TRIP780 multiphase steel. Strain-life data has been generated for as-received (0% prestrain), 10% and 20% prestrained samples, in both baked and unbaked conditions. Cold rolling  increased the number of strain reversals to failure at high cyclic strain amplitudes with no effect at low strain amplitudes. Bake hardening increased the number of reversals to failure at high cyclic strain amplitudes. The prestrained material exhibited partial cyclic softening, with some residual strength increase. The residual strength increase was attributed to the austenite to martensite transformation that occurred during the prestraining process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tube hydroforming has been widely used to produce automotive structural components due to the superior properties of the hydroformed parts in terms of their light weight and structural rigidity. Compared to the traditional manufacturing process for a closed-section member including stamping and followed by welding, tube-hydro forming leads to cost savings due to reduced tooling and material handling. However, the high pressure pumps and high tonnage press required in hydroforming, lead to increased capital investment reducing the cost benefits. This study explores low pressure tube hydro forming which reduces the internal fluid pressure and die closing force required to produce the hydroformed part. The experimental and numerical analysis was for low pressure hydro formed stainless steel tubes. Die filling conditions and thickness distributions are measured and critically analysed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The increasing application of hydroforming for the production of automotive lightweight components is mainly due to the attainable advantages regarding part properties and improving technology of the forming equipment. However, the high pressure requirements during hydroforming decreases the costs benefit and make the part expensive. Another requirement of automotive industries is weight reduction and better crash performance. Thereby steel industries developed advanced high strength steels which have high strength, good formability and better crash performance. Even though the thickness of the sheet to form the component is reduced, the pressure requirement to form the part during expansion is still high during high pressure hydroforming. This paper details the comparison between high and low pressure tube hydroforming for the square cross-section geometry. It is determined that the internal pressure and die closing force required for low pressure tube hydroforming process is much less than that of high pressure tube hydroforming process. The stress and thickness distribution of the part during tube crushing were critically analysed. Further, the stress distribution and forming mode were studied in this paper. Also friction effect on both processes was discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

After 2% predeformation, the baking treatment with different schedule was carried out for low silicon TRIP steel sheet with niobium. The effects of baking temperature and time on microstructures and mechanical properties were investigated. The results showed that with increasing the baking temperature and time, the volume fraction of retained austenite decreases, and the volume fraction of tempered martensite increases; as baking temperature ranges from 80°C to 170°C, the bake-hardening (BH) value increases obviously, while from 170°C to 230°C, the variation of BH value is very slight; as baking time ranges from 2 min to 20 min, the BH value increases significantly, while the BH value decreases when baking time exceeds 20 min. So that when the baking temperature is 170°C and the baking time is 20 min, the low silicon TRIP steel sheet exhibits good bake-hardening behavior, and the highest BH value is above 70 MPa.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Light-weight structure is one of the keys to improve the fuel efficiency and reduce the environmental buden of transport vehicles (automotive and rail). While fibreglass composites have been increasingly used to replace steel in automotive industry, the adoption rate for carbon fibre composites which are much lighter, stronger and stiffere than glass fibre composites, remains low. The main reason is the high cost of carbon fibres. To further reduce vehicle weight without excessive cost increase, one technique is to incorporate carbon fibre reinforcement into glass fibre composites and innovative design by selectively reinforcing along the main load path. Glass/carbon woven fabrics with epoxy resin matrix were utilised for preparing hybrid composite laminates. The in-plane mechanical properties such as tensile and three-point-bending flexural properties were investigated for laminates with different carbon fibre volume and lay-up scheme. It is shown that hybrid composite laminates with 50% carbon fibre reinforcement provide the best flexural properties when the carbon layers are at the exterior, while the alternating carbon/glass lay-up provides the highest compressive strength.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Radio frequency micro electro mechanical systems (RF MEMS) have enabled a new generation of devices that bring many advantages due to their very high performances. There are many incentives for the integration of the RF MEMS switches and electronic devices on the same chip. However, the high actuation voltage of RF MEMS switches compared to electronic devices poses a major problem. By reducing the actuation voltage of the RF MEMS switch, it is possible to integrate it into current electronic devices. Lowering the actuation voltage will have an impact on RF parameters of the RF MEMS switches. This investigation focuses on recent progress in reducing the actuation voltage with an emphasis on a modular approach that gives acceptable design parameters. A number of rules that should be considered in design and fabrication of low actuation RF MEMS switches are suggested.