175 resultados para high-strength steel


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of ultrafine grained microstructures in steels has received considerable attention in recent times. In many cases the aim is to produce high strength structural steels with minimal alloying. It is well established that for an equiaxed ferrite with a uniform dispersion of second phase, both the strength and toughness will be markedly improved if the grain size can be reduced to 1-2 μm, from the typical range of 5-10 μm. Means of achieving this through dynamic strain induced transformation are examined here, following a brief overview of some of the key issues encountered when attempting to refine the austenite in existing mill configurations. A number of deformation microstructure maps are developed to aid the discussion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of additions of Nb, Al and Mo to Fe-C-Mn-Si TRIP steel on the final microstructure and mechanical properties after simulated  thermomechanical processing (TMP) has been studied. The laboratory simulations of discontinuous cooling during TMP were performed using a hot rolling mill. All samples were characterised using optical microscopy and image analysis. The volume fraction of retained austenite was ascertained using a heat tinting technique and X-ray diffraction measurements. Room temperature mechanical properties were determined by a tensile test. From this a comprehensive understanding of the structural aspect of the bainite transformation in these types of TRIP steels has been developed. The  results have shown that the final microstructures of thermomechanically processed TRIP steels comprise 50 % of polygonal ferrite, 7 - 12 % of retained austenite, non-carbide bainitic structure and martensite. All steels exhibited a good combination of ultimate tensile strength and total elongation. The microstructure-property examination revealed the relationship between the composition of TRIP steels and their mechanical properties. It has been shown that the addition of Mo to the C-Si-Mn-Nb TRIP steel increases the ultimate tensile strength up to 1020 MPa. The stability of the retained austenite of the Nb-Mo steel was degraded, which led to a decrease in the elongation (24 %). The results have demonstrated that the addition of Al to C-Si-Mn-Nb steel leads to a good combination of strength (∼ 940 MPa) and elongation (∼ 30 %) due to the formation of refined acicular ferrite and granular bainite structure with ∼7 - 8 % of stable retained austenite. Furthermore, it has been found that the addition of Al increases the volume fraction of bainitic ferrite laths. The investigations have shown an interesting result that, in the Nb-Mo-Al steel, Al has a more pronounced effect on the microstructure in comparison with Mo. It has been found that the bainitic structure of the Nb-Mo-Al steel appears to be more granular than in the Nb-Mo steel. Moreover, the volume fraction of the retained austenite increased (12 %) with decreasing bainitic ferrite content. The results have demonstrated that this steel has the best mechanical properties (1100 MPa and 28 % elongation). It has been concluded that the combined effect of Nb, Mo, and Al addition on the dispersion of the bainite, martensite and retained austenite in the ferrite matrix and the morphology of these phases is different than effect of Nb, Mo and Al, separately.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The trend in the automotive industry towards new advanced high strength steels (AHSS), combined with the ongoing reduction in program lead times have increased the need to get tool designs right, first time. Despite the fact that the technology used by sheet metal stamping companies to design and manufacture tooling is advancing steadily, finding optimal process parameters and tool geometries remains a challenge. Consequently, there has been a transition from designs based largely on trial and error techniques and the experience of the stamping engineer, to the increased use of virtual manufacturing and finite element (FE) simulation predictions as an indispensable tool in the design process. This work investigates the accuracy of FE techniques in predicting the forming behavior of AHSS grades, such as TRIP and dual phase, as compared to more commonly used conventional steel grades. Three different methods of simulation, one-step, implicit and explicit techniques, were used to model the forming process for an automotive part. Results were correlated with experimental strain and thickness measurements of manufactured components from the production line.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the drive towards implementing Advanced High Strength Steels (AHSS) in the automotive industry; stamping engineers need to quickly answer questions about forming these strong materials into elaborate shapes.
Commercially available codes have been successfully used to accurately predict formability, thickness and strains in complex parts. However, springback and twisting are still challenging subjects in numerical simulations of AHSS components. Design of Experiments (DOE) has been used in this paper to study the sensitivity of the implicit and explicit numerical results with respect to certain arrays ofuser input parameters in the forming ofan AHSS component. Numerical results were compared to experimental measurements of the parts stamped in an industrial production line. The forming predictions of the implicit and explicit codes were in good agreement with the experimental measurements for the conventional steel grade, while lower accuracies were observed for the springback predictions. The forming
predictions of the complex component with an AHSS material were also in good correlation with the respective experimental measurements. However, much lower accuracies were observed in its springback predictions. The number of integration points through the thickness and tool offset were found to be of significant importance, while coefficient of friction and Young's modulus (modeling input parameters) have no significant effect on the accuracy of the predictions for the complex geometry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The sheet forming industry is plagued by inherent variations in its many input variables, making quality control and improvements a major hurdle. This is particularly poignant for Advanced High Strength Steels (AHSS), which exhibit a large degree of property variability. Current FE-based simulation packages are successful at predicting the manufacturability of a particular sheet metal components, however, due to their numerical deterministic nature are inherently unable to predict the performance of a real-life production process. Though they are now beginning to incorporate the stochastic nature of production in their codes. This work investigates the accuracy and precision of a current stochastic simulation package, AutoForm Sigma v4.1, by developing an experimental data set where all main sources of variation are captured through precise measurements and standard tensile tests. Using a Dual Phase 600Mpa grade steel a series of semi-cylindrical channels are formed at two Blank Holder Pressure levels where the response metric is the variation in springback determined by the flange angle. The process is replicated in AutoForm Sigma and an assessment of accuracy and precision of the predictions are performed. Results indicate a very good correspondence to the experimental trials, with mean springback response predicted to within 1 ° of the flange angle and the interquartile spread of results to within 0.22°.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hydroforming is one option to reduce vehicle weight while increasing component stiffness and rigidity. This typically involves using a fluid to form a component with high internal pressure. Tube hydroforming has gained increasing interest in the automotive and aerospace industries because of its many advantages such as part consolidation, good quality of the formed part etc. The main advantage is that the uniform pressure can be transferred to whole part at the same time. In low pressure hydroforming, the internal pressure is significantly and the hydroformed section length of line stays almost the same as the circumference of the blank tube. This paper details the comparison between high and low pressure hydroforming. It is shown that the internal pressure and holding force required for low pressure hydroforming process is much less than that of high pressure. Also stress and thickness distribution are more uniform and the process is highly suitable for the forming of advanced high strength steels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The requirement for the automotive industry at present and even more so in the future is to simultaneously develop materials, economic forming processes and techniques for weight reduction of the component. To fulfil this need steel manufacturers have developed Advanced High Strength Steels which have high strength and good formability. Due to high strength, material thickness can be reduced without compromising the function of the component. High pressure hydro forming is one process that can be used to produce complex components from these materials. However, reduction in material thickness of these steels does not result in a large decrease of internal fluid pressure and die closing force during tube hydro forming and hence the higher strengths of these steels will require higher pressures. Tube crushing is a process in which the component can be formed with low pressures. In this paper numerical comparison of ramp and constant pressurization system during tube crushing for a TRIP steel is studied. It is proposed that ramp pressure is the best option to obtain a part with accurate geometrical shape from tube crushing with less die closing force. The stress and thickness distribution of the part during tube crushing were critically analysed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interest in using titanium (Ti) alloys as load-bearing implant materials has increased due to their high strength to weight ratio, lower elastic modulus, and superior biocompatibility and enhanced corrosion resistance compared to conventional metals such as stainless steel and Co-Cr alloys. In the present study, the in vitro cytotoxicity of five binary titanium alloys, Ti15Ta, Ti15Nb, Ti15Zr, Ti15Sn and Ti15Mo, was assessed using human osteosarcoma cell line, SaOS-2 cells. The Cell proliferation and viability were determined, and cell adhesion and morphology on the surfaces of the binary Ti alloys after cell culture were observed by SEM. Results indicated that the Ti binary alloys of Ti15Ta, Ti15Nb and Ti15Zr exhibited the same level of excellent biocompatibility; Ti15Sn alloy exhibited a moderate biocompatibility while Ti15Mo alloy exhibited a moderate cytotoxicity. The SaOS-2 osteoblast-like cells had flattened and spread across the surfaces of the Ti15Ta, Ti15Nb, Ti15Zr and Ti15Sn groups; however, the cell shapes on the Ti15Mo alloy was shrinking and unhealthy. These results indicated that the Mo contents should be limited to a certain level in the design and development of new Ti alloys for implant material applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mg alloys are one of promising eco-materials. The present paper describes the importance of grain refinement to develop high performance Mg alloys. The fine-grained Mg alloys exhibit not only a good combination of high strength and high ductility at room temperature, but also high formability (superplasticity) at elevated temperatures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Advanced high strength steels (AHSS), in particular, are an attractive group materials, offering higher strength for improved energy absorption and the opportunity to reduce weight through the use of thinner gauges. High pressure tube hydroforming (HPTH) has been used to produce safety components for these steels, but it is expensive. Low pressure tube hydroforming (LPTH) is a lower cost alternative to form the safety components in the car. The side intrusion beam is the second most critical part after front rail in the car structure for passenger safety during crash. The forming as well as crash behaviour of a square side intrusion beam from both processes was investigated using numerical simulation. This paper investigated the interaction between the forming and crash response of these materials in order to evaluate their potential for use in vehicle design for crashworthiness. The energy absorption characteristics of the different tubes were calculated and the results from the numerical analyses compared for both hydroforming process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Commercial Ti with a multimodal grain structure was successfully produced using cryorolling, followed by low-temperature annealing. This multimodal grain structure Ti exhibited a combination of high yield strength (926 MPa), a uniform elongation of 11% and a failure elongation of 23%. The strength enhancement was mainly derived from the ultrafine equiaxed grains, while the improved ductility originated from the large fraction of high-angle grain boundaries and the multimodal grain structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thesis identified how advanced high strength steels perform compared to conventional steels in terms of weight reduction and crash performance for automotive bodies. The novel production method of low pressure tube hydroforming was applied to form these advanced steels to reduce the press tonnage and fluid pressure compared to the conventional high pressure process. In addition analytical models were developed to predict the force and pressure in the low pressure process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A series of rare earth organic compounds pioneered by our group have been shown to provide a viable alternative to theuse of chromates as corrosion inhibitors for some steel and aluminium applications. For example we have shown thatthe lanthanum 4-hydroxy cinnamate offers excellent corrosion mitigation for mild steel in aqueous environments whilerare earth diphenyl phosphates offer the best protection in the case of aluminium alloys. In both cases the protectionappears to be related to the formation of a nanometre thick interphase occurring on the surface that reduces theelectrochemical processes leading to metal loss or pitting. Very recent work has indicated that we may even be able toaddress the challenging issue of stress corrosion cracking of high strength steels. Furthermore, filiform corrosion can besuppressed when selected rare earth inhibitor compounds are added as pigments to a polymer coating. There is little doubtfrom the work thus far that a synergy exists between the rare earth and organic inhibitor components in these novelcompounds. This paper reviews some of the published research conducted by the senior author and colleagues over the past10 years in this developing field of green corrosion inhibitors

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A 0.79C-1.5Si-1.98Mn-0.98Cr-0.24Mo-1.06Al-1.58Co (wt%) steel was isothermally heat treated at 350°C bainitic transformation temperature for 1 day to form fully bainitic structure with nano-layers of bainitic ferrite and retained austenite, while a 0.26C-1.96Si-2Mn-0.31Mo (wt%) steel was subjected to a successive isothermal heat treatment at 700°C for 300 min followed by 350°C for 120 min to form a hybrid microstructure consisting of ductile ferrite and fine scale bainite. The dislocation density and morphology of bainitic ferrite, and retained austenite characteristics such as size, and volume fraction were studied using Transmission Electron Microscopy. It was found that bainitic ferrite has high dislocation density for both steels. The retained austenite characteristics and bainite morphology were affected by composition of steels. Atom Probe Tomography (APT) has the high spatial resolution required for accurate determination of the carbon content of the bainitic ferrite and retained austenite, the solute distribution between these phases and calculation of the local composition of fine clusters and particles that allows to provide detailed insight into the bainite transformation of the steels. The carbon content of bainitic ferrite in both steels was found to be higher compared to the para-equilibrium level of carbon in ferrite. APT also revealed the presence of fine C-rich clusters and Fe-C carbides in bainitic ferrite of both steels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Low cost ferrite and bainite(FB) steels offer the prospect of high ultimate tensile strength combined with high hole expansion ratio. The enhanced strain hardening and formabilityof FB steels were primarily associated with the fine ferrite matrix, the low residual stresses and dislocation densityand compatible deformation between both phases.This overview describes the various techniques to produce FB steels, and comparestheresulting microstructure, tensile propertiesand tretchflangeabilitywith conventional HSLA and DP steels.A new generation of ultrafine ferrite and nano-scalebainiteautomotive steelsisunder development forthe futuredemands of extremely high strength and ductilitythroughthe fabricationtechnologiesinvolvingphase transformationsandplastic deformation.