130 resultados para epoxy thermosets


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the effect of various aging environments on the painted surface finish of unidirectional carbon fibre composite laminates, manufactured by autoclave and a novel out-of-autoclave technique was investigated. Laminates were exposed to water immersion, 95 % relative humidity and cyclic environments for 552 h and the surface finish was evaluated using visual and wave-scan distinctness of image (DOI) techniques. It was found that the laminate surface finish was dependent on the amount of moisture in the aging test. Minor surface waviness occurred on the laminates exposed to the cyclic test, whereas, surface waviness, print through and DOI values were all significantly higher as the laminates absorbed larger quantities of moisture from the hygrothermal and hydrothermal tests. The water immersion test, which was the most detrimental to the surface finish of the painted laminates, produced dense blistering on the autoclave manufactured laminate surface whereas the out-of-autoclave laminate surface produced only a few. It was found that the out-of-autoclave laminate had high substrate surface roughness which resulted in improved paint adhesion and, therefore, prevented the formation of surface blistering with aging. © 2012 Springer Science+Business Media Dordrecht.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, the effect of hygrothermal aging on the painted surface finish of unidirectional and fabric carbon fibre composite laminates, with and without surfacing film was investigated. The results highlighted the importance of ensuring that the composite surface directly beneath the paint layer is made from a uniform material with a consistent thickness in order to minimise surface defects from occurring during aging. The surfacing film was found to minimise the print through development on the painted unidirectional and twill composite surfaces. However, the surfacing film layer was found to intermingle with the carbon fibre plies during cure, which resulted in an uneven film thickness that caused increased levels of orange peel. The twill laminate painted surface produced high levels of print through and surface waviness that was caused by the large resin rich regions located within the tow intersections at the surface which enlarged due to thermal expansion and swelling of the matrix with hygrothermal aging. It was also noted that the small resin rich regions between the individual carbon fibres on the unidirectional composite surface were sufficiently large to print through the painted surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural battery composites that concurrently carry load and store electric energy will
transform future vehicles. They can replace inert structural components and simultaneously provide supplementary power for light load applications. Rechargeable lithium polymer battery cells are embedded into carbon fibre/epoxy matrix composite laminates, which are then tested under tension and three-point bending to investigate the mechanical and electrical performances of structural batteries. The experimental results show that the integration of battery cells into composite laminates has negligible impact on the mechanical strengths of the composite structures. Furthermore, the battery cells remain 95% effective at loads up to about 60% of the ultimate flexural failure load and 50% of the ultimate tensile failure load.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal resistance is one of the most dominative properties for polymer materials. Thermal degradation mechanisms of epoxidized natural rubber (ENR) and NR are studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The results show that, the introduction of epoxy groups into the NR molecular main chain leads to a remarkable change in the degradation mechanism. The thermal stability of ENR is worse than that of NR. For the first thermooxidative degradation stage, the thermal decomposition mechanism of ENR is similar to that of NR, which corresponds to a mechanism involving one-dimensional diffusion. For the second stage, the thermal decomposition mechanism of ENR is a three-dimensional diffusion, which is more complex than that of NR. Kinetic analysis showed that activation energy (E?), activation entropy (?H) and activation Gibbs energy (?G) values are all positive, indicating that the thermooxidative degradation process of ENR is non-spontaneous.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the first time, internally reinforced aggregate polymer ceramic composites were evaluated against fragment simulating projectiles (FSPs) of various calibers to investigate their ballistic impact response. Samples were prepared by mechanically mixing B4C and cBN over a range of ratios and combinations with either thermosetting phenolic or epoxy resin and aramid pulp. Dry mixtures were then molded in a closed die using a heated platen press. The resulting tiles were then mounted as ‘‘strike faces’’ to an aramid backing material using an epoxy resin. Backed targets were tested in a fully instrumented firing range against 5.56 mm FSPs to test ballistic limit. A further series of tests using 7.62, 12.5, and 20 mm FSPs was conducted to examine round deformation across a range of fragments calibers. Round deformations were measured after impact and plotted against shot velocity. It was found that the polymer ceramic composite materials were effective round deformers and, like sintered ceramic strike faces, demonstrated improved ballistic performance at an equivalent areal density and impressive multihit capability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integrating rechargeable battery cells with fibre reinforced polymer matrix composites is a promising technology to enable composite structures to concurrently carry load and store electric energy, thus significantly reducing weight at the system level. To develop a design criterion for structural battery composites, rechargeable lithium polymer battery cells were embedded into carbon fibre/epoxy matrix composite laminates, which were then subjected to tensile, flexural and compressive loading. The electric charging/discharging properties were measured at varying levels of applied loads. The results showed that degradation in battery performance, such as voltagea and energy storage capacity, correlated well with the applied strain under three different loading conditions. Under compressive loading, battery cells, due to their multilayer construction, were unable to prevent buckling of composite face sheets due to the low lateral stiffness, leading to lower compressive strength that sandwich panels with foam core.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classical proinflammatory eicosanoids, and more recently discovered lipid mediators with anti-inflammatory and proresolving bioactivity, exert a complex role in the initiation, control, and resolution of inflammation. Using a targeted lipidomics approach, we investigated circulating lipid mediator responses to resistance exercise and treatment with the NSAID ibuprofen. Human subjects undertook a single bout of unaccustomed resistance exercise (80% of one repetition maximum) following oral ingestion of ibuprofen (400 mg) or placebo control. Venous blood was collected during early recovery (0–3 h and 24 h postexercise), and serum lipid mediator composition was analyzed by LC-MS-based targeted lipidomics. Postexercise recovery was characterized by elevated levels of cyclooxygenase (COX)-1 and 2-derived prostanoids (TXB2, PGE2, PGD2, PGF2α, and PGI2), lipooxygenase (5-LOX, 12-LOX, and 15-LOX)-derived hydroxyeicosatetraenoic acids (HETEs), and leukotrienes (e.g., LTB4), and epoxygenase (CYP)-derived epoxy/dihydroxy eicosatrienoic acids (EpETrEs/DiHETrEs). Additionally, we detected elevated levels of bioactive lipid mediators with anti-inflammatory and proresolving properties, including arachidonic acid-derived lipoxins (LXA4 and LXB4), and the EPA (E-series) and DHA (D-series)-derived resolvins (RvD1 and RvE1), and protectins (PD1 isomer 10S, 17S-diHDoHE). Ibuprofen treatment blocked exercise-induced increases in COX-1 and COX-2-derived prostanoids but also resulted in off-target reductions in leukotriene biosynthesis, and a diminished proresolving lipid mediator response. CYP pathway product metabolism was also altered by ibuprofen treatment, as indicated by elevated postexercise serum 5,6-DiHETrE and 8,9-DiHETrE only in those receiving ibuprofen. These findings characterize the blood inflammatory lipid mediator response to unaccustomed resistance exercise in humans and show that acute proinflammatory signals are mechanistically linked to the induction of a biological active inflammatory resolution program, regulated by proresolving lipid mediators during postexercise recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel self-healing system, consisting of poly(lactic-co-glycolic) acid (PLGA) porous particles loaded with a corrosion inhibitor, i.e. benzotriazole (BTA), has been successfully achieved via direct electro-spray deposition and subsequent epoxy spraying upon magnesium (Mg) alloy AMlite. The two-step process greatly simplified the multi-step fabrication of smart coatings reported previously. The PLGA particles demonstrate rapid response to both water and pH increase incurred by corrosion of Mg, ensuring instant and ongoing release of BTA to self-heal the protective functionality and retard further corrosion. Furthermore, nanopores in the PLGA–BTA microparticles, formed by the fast evaporation of dichloromethane during the electrospray process, also contribute to the fast release of BTA. Using Mg alloy AMlite as a model substrate which requires corrosion protection, potentiodynamic polarisation characterisation and scratch testing were adopted to reveal the anti-corrosion capability of the active coating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The disbondment of protective organic coatings is a widely reported pipeline coating failure mode in the oil and gas industry. Traditional methods of evaluating cathodic disbondment of pipeline coatings are based on visual inspection of pipeline conditions, and laboratory testing of cathodic disbondment resistance (CDR) using standard methods such as ASTM G8. Although some other laboratory-based techniques, such as scanning kelvin probe and scanning acoustic microscopy have been used to study the cathodic disbondment (CD) of coatings, these are often difficult to apply in practical testing. Over the past decade, electrochemical impedance spectroscopy (EIS) has been employed as a potential method for measuring CD. This paper reports preliminary results from an EIS study designed to characterise CD behaviour of epoxy coatings under excessive cathodic protection. EIS data correlated well with the area of disbonded coating. Analysis of EIS data can provide valuable information on the initiation and rates of CD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work investigated the effect of woven E-glass mass (25 g/m2, 50 g/m2, 85 g/m2, 135 g/m2) on the painted surface finish of various thermoset (EPIKOTETM RIM935, EPIKOTETM 04434, Ultratec LpTM ES300, Ultratec LpTM SPV6035) carbon fibre composite laminates, before and after aging at 95 °C for 168 h. The as-moulded laminate surfaces were evaluated using surface profilometry techniques and the painted and aged surfaces were evaluated using a wave-scan distinctness of image (DOI) instrument. It was found that the 25 g/m2 E-glass surface layer assisted with reducing the roughness of the as-moulded surfaces and the long-term waviness of the painted surfaces due to the increase in resin-richness at the surface. The EPIKOTETM 04434 resin system that contained diglycidyl ether of bisphenol F (DGEBF) epoxy had the least change in long-term waviness with thermal aging due to the rigid fluorene-based backbone in comparison to the diglycidyl ether of bisphenol A (DGEBA) systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interfacial interaction of composites dominates the properties of polymeric/inorganic nanocomposites. Herein, epoxy and hydroxyl groups are introduced into the natural rubber (NR) molecular chains to anchor oxygenous functional groups on the surface of graphene oxide (GO) sheets and therefore enhance the interfacial interaction between GO and rubber. From the morphological observation and interaction analysis, it is found that epoxidized natural rubber (ENR) latex particles are assembled onto the surfaces of GO sheets by employing hydrogen bonding interaction as driving force. This self-assembly depresses restacking and agglomeration of GO sheets and leads to homogenous dispersion of GO within ENR matrix. The formation of hydrogen bonding interface between ENR and GO demonstrates a significant reinforcement for the ENR host. Compared with those of pure ENR, the composite with 0.7 wt% GO loading receives 87% increase in tensile strength and 8.7 fold increase in modulus at 200% elongation after static in-situ vulcanization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex molecules have been successfully grafted onto the surface of unsized carbon fibre, a heterogeneous material which is a challenge to functionalise. The in situ generation of highly reactive phenyldiazo-species from their corresponding anilines was employed to achieve this task. The success of an initial proof-of-concept study (bearing a nitro moiety) supported by X-ray Photoelectron Spectroscopy (XPS) and physical characterisation, led to the design and synthesis of a more complex compound possessing a pendant amine moiety which could theoretically react with an epoxide based resin. After attachment to unsized oxidised fibres, analysis by XPS of the resulting fibres (fluorine used as an XPS tag) indicated a marked difference in functionalisation success which was attributed to steric factors, shown to be critical in influencing the attachment of the phenyldiazo-intermediate to the carbon fibre surface. Analysis of key fibre performance parameters of these fibres showed no change in elastic modulus, strength, surface topography or microscopic roughness when compared to the control unsized oxidised fibres. The functionalised fibres did however show a large increase in coefficient of friction. Single fibre fragmentation tests indicated a marked increase in interfacial shear strength, which was attributed to the pendent amine functionalities interacting with the epoxy resin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immiscible and miscible blends of poly(vinylidene fluoride) (PVDF) and acrylic rubber (ACM) were subjected to dynamic vulcanization to investigate the effect of crosslinking on phase separation. As a result of different processability, mixing torque behavior of miscible and immiscible blends was significantly different from one another. Scanning electron microscopy (SEM) was used to investigate the morphology of the system. After dynamic vulcanization, submicron ACM droplets were observed in the samples near the binodal curve of the system under mixing conditions. Small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) analysis were used to investigate the effect of dynamic vulcanization on the lamellar structure of the system. It was shown that for samples near the boundary of phase separation, increasing the crosslink density led to a decrease in the lamellar long period (L) as a sign of increment of crosslink density induced phase decomposition. Effects of shear rate on the final morphology of the system were investigated by changing the mixing temperature and by comparing the results of dynamic vulcanization at one phase and two phase regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characterization of novel metal reinforced electro-dialysis ion exchange membranes, for water desalination, by attenuated total reflectance Fourier transform infrared spectroscopy mapping is presented in this paper. The surface of the porous stainless steel fibre meshes was treated in order to enhance the amount of surface oxide groups and increase the material hydrophilicity. Then, the metal membranes were functionalized through a sol-gel reaction with silane coupling agents to enhance the affinity with the ion exchange resins and avoid premature metal oxidation due to redox reactions at the metal-polymer interface. Polished cross sections of the composite membranes embedded into an epoxy resin revealed interfaces between metallic frameworks and the silane layer at the interface with the ion exchange material. The morphology of the metal-polymer interface was investigated with scanning electron microscopy and Fourier transform infrared micro-spectroscopy. Fourier transform infrared mapping of the interfaces was performed using the attenuated total reflectance mode on the polished cross-sections at the Australian Synchrotron. The nature of the interface between the metal framework and the ion exchange resin was shown to be homogeneous and the coating thickness was found to be around 1 μm determined by Fourier transform infrared micro-spectroscopy mapping. The impact of the coating on the properties of the membranes and their potential for water desalination by electro-dialysis are also discussed.