174 resultados para advanced high strength steel


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 0.79C-1.5Si-1.98Mn-0.98Cr-0.24Mo-1.06Al-1.58Co (wt%) steel was isothermally heat treated at 350°C bainitic transformation temperature for 1 day to form fully bainitic structure with nano-layers of bainitic ferrite and retained austenite, while a 0.26C-1.96Si-2Mn-0.31Mo (wt%) steel was subjected to a successive isothermal heat treatment at 700°C for 300 min followed by 350°C for 120 min to form a hybrid microstructure consisting of ductile ferrite and fine scale bainite. The dislocation density and morphology of bainitic ferrite, and retained austenite characteristics such as size, and volume fraction were studied using Transmission Electron Microscopy. It was found that bainitic ferrite has high dislocation density for both steels. The retained austenite characteristics and bainite morphology were affected by composition of steels. Atom Probe Tomography (APT) has the high spatial resolution required for accurate determination of the carbon content of the bainitic ferrite and retained austenite, the solute distribution between these phases and calculation of the local composition of fine clusters and particles that allows to provide detailed insight into the bainite transformation of the steels. The carbon content of bainitic ferrite in both steels was found to be higher compared to the para-equilibrium level of carbon in ferrite. APT also revealed the presence of fine C-rich clusters and Fe-C carbides in bainitic ferrite of both steels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An ultrafine grained Nb microalloyed steel was produced by cold rolling of martensite followed by annealing heat treatments at different times to study its effect on the microstructure and mechanical behaviour of the ultrafine grained steel. High strength was achieved by this thermomechanical processing due to the formation of cell and subgrain dislocation substructure; however annealing reduced both strength and elongation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High Mn steels demonstrate an exceptional combination of high strength and ductility due to their high work hardening rate during deformation. The microstructure evolution and work hardening behavior of Fe18Mn0.6C1.5Al TWIP steel in uni-axial tension were examined. The purpose of this study was to determine the contribution of all the relevant deformation mechanism : slip, twinning and dynamic strain aging. Constitutive modeling was carried out based on the Kubin-Estrin model, in which the densities of mobile and forest dislocations are coupled in order to account for the continuous immobilization of mobile dislocations during straining. These coupled dislocation densities were also used for simulating the contribution of dynamic strain aging on the flow stress. The model was modified to include the effect of twinning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 0.79C-1.5Si-1.98Mn-0.98Cr-0.24Mo-1.06Al-1.58Co (wt%) steel was isothermally heat treated at 200°C for 10 days to form a nano-scale bainitic microstructure consisting of nanobainitic ferrite laths with high dislocation density and retained austenite films. The crystallographic analysis using TEM and EBSD revealed that the bainitic ferrite laths are close to the Nishiyama-Wassermann orientation relationship with the parent austenite. There was only one type of packet identified in a given transformed austenite grain. Each packet consisted of two different blocks having variants with the same habit plane, but different crystallographic orientations. The presence of fine C-rich clusters and Fe-C carbides with a wide range of compositions in bainitic ferrite was revealed by Three-dimensional Atom Probe Tomography (APT). The high carbon content of bainitic ferrite compared to the para-equilibrium level of carbon in ferrite, absence of segregation of carbon to the austenite/bainitic ferrite interface and absence of partitioning of substitutional elements between the retained austenite and bainitic ferrite were also found using APT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The common grades of steel used in roll forming are: hot rolled carbon steel, high strength low alloy and recovery annealed cold rolled sheet. These steels are prone to ageing and are often skin passed and/or roller leveled to eliminate ageing as it can lead to problems in forming. In roll forming, shape defects such as bow, twist and camber are considered to be related to very small plastic strains in the longitudinal direction and hence knowledge of the material properties in the elastic plastic transition range is necessary if the process is to be modelled accurately. Previous studies with aluminium have indicated that skin pass rolling can lead to residual stresses in the strip. In this work, the study was extended to aged carbon steel and to the effect of roller leveling on both aged material and strip that had been given a light cold rolling to simulate a skin pass treatment. The results suggest that roller leveling reduced the magnitude of residual stresses resulting from skin pass rolling.

The significant differences observed between tensile and bending test results, at and near, the elastic plastic transition reinforces the need to consider bending properties when assessing the effect of prior processing on strip for roll forming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Roll forming of ultra-high strength steels (UHSS) and other high strength alloys is an advanced manufacturing methodology with the ability of cold forming those materials to complex three-dimensional shapes for lightweight structural applications. Due to their high strength, most of these materials have a reduced ductility which excludes conventional sheet forming methods under cold forming conditions. Roll forming is possible due to its low strains and incremental forming characteristic. Recent research investigates the development of high strength nano-structured aluminum sheet and titanium alloys, as well as their behaviour in roll forming with regard to formability, material behaviour and shape defects. The development of new materials is often limited to small scale samples due to the high preparation costs. In contrast, industrial application needs larger scale tests for validation, especially in roll forming where a minimum sheet length is required to feed the sample trough the roll forming machine. This work describes a novel technique for studying roll forming of a short length of experimental material. DP780 steel strips (500mm – 1300mm length) were welded between two mild steel carrier sheets of similar width and thickness giving an overall strip length of 2m. Roll forming trials were performed and longitudinal edge strain, bow and springback determined on the welded samples and samples formed of full length DP780 strip before and after cut off. The experimental results of this work show that this method gives a reasonable approach for predicting material behavior in roll forming transverse to the rolling direction. In contrast to that significant differences in longitudinal bow were observed between the welded sections and the sections formed of full length DP780 strip; this indicates that the applicability of this method is limited with regard to predicting longitudinal material behavior in roll forming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corrosion resistance and mechanical properties of nanocrystalline aluminium (Al) and Al-20. wt.%Cr alloys, synthesized by high-energy ball milling followed by spark plasma sintering, were investigated. Both alloys exhibited an excellent combination of corrosion resistance and compressive yield strength, which was attributed to the nanocrystalline structure, extended solubility, uniformly distributed fine particles, and homogenous microstructure induced by high-energy ball milling. This work demonstrates the possibilities of developing ultra-high strength Al alloys with excellent corrosion resistance, exploiting conventionally insoluble elements or alloying additions via suitable processing routes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the investigation of the off-stoichiometry and site-occupancy of κ-carbide precipitates within an austenitic (γ), Fe-29.8Mn-7.7Al-1.3C (wt.%) alloy using a combination of atom probe tomography and density functional theory. The chemical composition of the κ-carbides as measured by atom probe tomography indicates depletion of both interstitial C and substitutional Al, in comparison to the ideal stoichiometric L′12 bulk perovskite. In this work we demonstrate that both these effects are coupled. The off-stoichiometric concentration of Al can, to a certain extent, be explained by strain caused by the κ/γ mismatch, which facilitates occupation of Al sites in κ-carbide by Mn atoms (MnγAl anti-site defects). The large anti-site concentrations observed by our experiments, however, can only be stabilized if there are C vacancies in the vicinity of the anti-site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Fe-0.26C-1.96Si-2Mn with 0.31Mo (wt%) steel was subjected to a novel thermomechanical processing route to produce fine ferrite with different volume fractions, bainite, and retained austenite. Two types of fine ferrites were found to be: (i) formed along prior austenite grain boundaries, and (ii) formed intragranularly in the interior of austenite grains. An increase in the volume fraction of fine ferrite led to the preferential formation of blocky retained austenite with low stability, and to a decrease in the volume fraction of bainite with stable layers of retained austenite. The difference in the morphology of the bainitic ferrite and the retained austenite after different isothermal ferrite times was found to be responsible for the deterioration of the mechanical properties. The segregation of Mn, Mo, and C at distances of 2-2.5 nm from the ferrite and retained austenite/martensite interface on the retained austenite/martensite site was observed after 2700 s of isothermal hold. It was suggested that the segregation occurred during the austenite-to-ferrite transformation, and that this would decrease the interface mobility, which affects the austenite-to-ferrite transformation and ferrite grain size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel ultra-high strength TRIP (transformation induced plasticity) steel, with ~1.5. GPa strength and good ductility of ~26% has been produced. The microstructure consists of ultrafine ferrite, and a large volume fraction of austenite. The flow stress was significantly increased by a reduction in the grain size, but the effect of strain rate on the flow stress was negligible. The formation of stress induced martensite was found to increase linearly with strain, and a reduction in the grain size correlated with an increase in the stress required to form the martensite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, a high-manganese Fe-23Mn-1.5Al-0.3C Twinning-Induced Plasticity (TWIP) steel was subjected to plastic shear deformation using Equal-Channel Angular Pressing (ECAP) at 300 °C following route BC and additional annealing. The microstructure evolution during both deformation by ECAP and subsequent annealing was investigated and correlated with the mechanical properties. The successive grain refinement during ECAP was promoted by two parallel mechanisms, namely dislocation driven grain fragmentation and twin fragmentation, and accounted for the ultra-high strength. In addition, due to the relatively low volume fraction of deformation twins after ECAP at 300 °C, further contribution of deformation twinning during room temperature deformation allowed additional work-hardening capacity and elongation. During subsequent recovery annealing the ultra-fine grains and deformation twins were thermally stable, which supported retainment of the high yield strength along with regained uniform elongation. For the first time, the texture evolution during ECAP and during the following heat treatment was analyzed. After 1, 2, and 4 ECAP passes a transition texture with the characteristic texture components of both high- and low-SFE materials developed. During the following heat treatment the texture evolution proceeded similar to that observed in the same material after cold rolling. Retaining of the ECAP texture components due to oriented nucleation at grain boundaries and triple junctions as well as annealing twinning accounted for the formation of a weak, retained ECAP texture after recrystallization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon fiber reinforced polymer (CFRP) is found to be an effective material for the retrofitting of both reinforced concrete (RC) and steel structures. However, retrofitting such structures using CFRP alone is shown to exhibit a premature failure due to early de-bonding of the CFRP laminates from the hosting sur-faces. On the other hand, steel plates are also used separately for the steel and RC structures. However, steel plates usually add the self-weight to the structures whereas CFRP is known for its high strength to weight ra-tio. In the present study, the advantages of both steel plates and CFRP is used to form a hybrid retrofitting sys-tem that is able to withstand the existing load to prevent the failure of the structures. In order to improve the retrofitting efficiency of a steel-concrete composite structures, an experimental investigation is carried out to examine the use of effectiveness of CFRP-steel hybrid retrofitting system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current study, a high-carbon, high-alloy steel (0.79 pct C, 1.5 pct Si, 1.98 pct Mn, 0.98 pct Cr, 0.24 pct Mo, 1.06 pct Al, and 1.58 pct Co in wt pct) was subjected to an isothermal bainitic transformation at a temperature range of 473 K to 623 K (200 °C to 350 °C), resulting in different fully bainitic microstructures consisting of bainitic ferrite and retained austenite. With a decrease in the transformation temperature, the microstructure was significantly refined from ~300 nm at 623 K (350 °C) to less than 60 nm at 473 K (200 °C), forming nanostructured bainitic microstructure. In addition, the morphology of retained austenite was progressively altered from film + blocky to an exclusive film morphology with a decrease in the temperature. This resulted in an enhanced wear resistance in nanobainitic microstructures formed at low transformation temperature, e.g., 473 K (200 °C). Meanwhile, it gradually deteriorated with an increase in the phase transformation temperature. This was mostly attributed to the retained austenite characteristics (i.e., thin film vs blocky), which significantly altered their mechanical stability. The presence of blocky retained austenite at high transformation temperature, e.g., 623 K (350 °C) resulted in an early onset of TRIPing phenomenon during abrasion. This led to the formation of coarse martensite with irregular morphology, which is more vulnerable to crack initiation and propagation than that of martensite formed from the thin film austenite, e.g., 473 K (200 °C). This resulted in a pronounced material loss for the fully bainitic microstructures transformed at high temperature, e.g., 623 K (350 °C), leading to distinct sub-surface layer and friction coefficient curve characteristics. A comparison of the abrasive behavior of the fully bainitic microstructure formed at 623 K (350 °C) and fully pearlitic microstructure demonstrated a detrimental effect of blocky retained austenite with low mechanical stability on the two-body abrasion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of ultrafine grained microstructures in steels has received considerable attention in recent times. In many cases the aim is to produce high strength structural steels with minimal alloying. It is well established that for an equiaxed ferrite with a uniform dispersion of second phase, both the strength and toughness will be markedly improved if the grain size can be reduced to 1-2 μm, from the typical range of 5-10 μm. Means of achieving this through dynamic strain induced transformation are examined here, following a brief overview of some of the key issues encountered when attempting to refine the austenite in existing mill configurations. A number of deformation microstructure maps are developed to aid the discussion.