105 resultados para Nanostructured WO3


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the fabrication and growth mechanism of net-shaped micropatterned self-organized thin-film TiO2 nanotube (TFTN) arrays on a silicon substrate are reported. Electrochemical anodization is used to grow the nanotubes from thin-film titanium sputtered on a silicon substrate with an average diameter of ?30 nm and a length of ?1.5 ?m using aqueous and organic-based types of electrolytes. The fabrication and growth mechanism of TFTN arrays from micropatterned three-dimensional isolated islands of sputtered titanium on a silicon substrate is demonstrated for the first time using focused-ion-beam (FIB) technique. This work demonstrates the use of the FIB technique as a simple, high-resolution, and maskless method for high-aspect-ratio etching for the creation of isolated islands and shows great promise toward the use of the proposed approach for the development of metal oxide nanostructured devices and their integration with micro- and nanosystems within silicon-based integrated-circuit devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Herein we report a novel approach to toughen epoxy thermosets using a block ionomer, i.e., sulfonated polystyrene-block-poly(ethylene-co-butylene)-block- polystyrene (SSEBS). SSEBS was synthesized by sulfonation of SEBS with 67 wt % polystyrene (PS). Phase morphology of the epoxy/SSEBS blends can be controlled at either nanometer or micrometer scale by simply adjusting the sulfonation degree of SSEBS. It has been found that there exists a critical degree of sulfonation (10.8 mol %) forming nanostructures in these epoxy/SSEBS blends. Above this critical value, macrophase separation can be avoided and only microphase separation occurs, yielding transparent nanostructured blends. All epoxy/SSEBS blends display increased fracture toughness compared to neat epoxy. But the toughening efficiency varies with the phase domain size, and their correlation has been established over a broad range of length scales from nanometers to a few micrometers. In the nanostructured blends with SSEBS of high sulfonation degrees, the fracture toughness decreases with decreasing size of the phase domains. In the macrophase-separated blends, only a slight improvement in toughness can be obtained with SSEBS of low sulfonation degrees. The epoxy blend with submicrometer phase domains in the range 0.05-1.0 μm containing SSEBS of a moderate degree of sulfonation (5.8 mol %) displays the maximum toughness. This study has clearly clarified the role of phase domain size on toughening efficiency in epoxy thermosets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis addresses an important issue in polymer materials science, the toughening of thermosetting polymers. A novel approach has been developed, i.e., the use of block ionomers/complexes to promote compatibilization with thermosetting epoxies. The morphology and mechanical properties of the resulting nanostructured epoxies were intensively studied to establish structure-property correlation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contact load-bearing response and surface damage resistance of multilayered hierarchical structured (MHSed) titanium were determined and compared to monolithic nanostructured titanium. The MHS structure was formed by combining cryorolling with a subsequent Surface Mechanical Attrition Treatment (SMAT) producing a surface structure consisted of an outer amorphous layer containing nanocrystals, an inner nanostructured layer and finally an ultra-fine grained core. The combination of a hard outer layer, a gradual transition layer and a compliant core results in reduced indentation depth, but a deeper and more diffuse sub-surface plastic deformation zone, compared to the monolithic nanostructured Ti. The redistribution of surface loading between the successive layers in the MHS Ti resulted in the suppression of cracking, whereas the monolithic nanograined (NG) Ti exhibited sub-surface cracks at the boundary of the plastic strain field. Finite element models with discrete layers and mechanically graded layersrepresenting the MHS system confirmed the absence of cracking and revealed a 38% decrease in shear stress in the sub-surface plastic strain field, compared to the monolithic NG Ti. Further, the mechanical gradation achieves a more gradual stress distribution which mitigates the interface failure and increases the interfacial toughness, thus providing strong resistance to loading damage. © 2014 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Application of nanomaterials as novel supporting materials for enzyme immobilisation has generated incredible interest in the biotechnology community. These robust nanostructured forms, such as nanoparticles, nanofibres, nanotubes, nanoporous, nanosheets, and nanocomposites, possess a high surface area to volume ratios that can cause a high enzyme loading and facilitate reaction kinetics, thus improving biocatalytic efficiency for industrial applications. In this article, we discuss research opportunities of nanoscale materials in enzyme biotechnology and highlight recent developments in biofuel production using advanced material supports for enzyme immobilisation and stabilisation. Synthesis and functionalisation of nanomaterial forms using different methods are highlighted. Various simple and effective strategies designed to result in a stable, as well as functional protein-nanomaterial conjugates are also discussed. Analytical techniques confirming enzyme loading on nanomaterials and assessing post-immobilisation changes are discussed. The current status of versatile nanomaterial support for biofuel production employing cellulases and lipases is described in details. This report concludes with a discussion on the likely outcome that nanomaterials will become an integral part of sustainable bioenergy production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silica nanoparticles were applied onto the fiber surface of an interbonded three-dimensional polycaprolactone fibrous tissue scaffold by an electrostatic layer-by-layer self-assembly technique. The nanoparticle layer was found to improve the fiber wettability and surface roughness. Osteoblast cells were cultured on the fibrous scaffolds to evaluate the biological compatibility. The silica nanoparticle coated scaffold showed enhanced cell attachment, proliferation, and alkaline phosphatase activities. The overall results suggested that interbonded fibrous scaffold with silica nanoparticulate coating could be a promising scaffolding candidate for various applications in bone repair and regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 Meso-porous metal materials have enhanced surface energies offering unique surface properties with potential applications in chemical catalysis, molecular sensing and selective separation. In this paper, commercial 20 nm diameter metal nano-particles, including silver and copper were blended with 7 nm silica nano-particles by shear mixing. The resulted powders were cold-sintered to form dense, hybrid thin films. The sacrificial silica template was then removed by selective etching in 12 wt% hydrofluoric acid solutions for 15 min to reveal a purely metallic meso-porous thin film material. The impact of the initial silica nano-particle diameter (7–20 nm) as well as the sintering pressure (5–20 ton·m−2) and etching conditions on the morphology and properties of the final nano-porous thin films were investigated by porometry, pyknometery, gas and liquid permeation and electron microscopy. Furthermore, the morphology of the pores and particle aggregation during shear mixing were assessed through cross-sectioning by focus ion beam milling. It is demonstrated that meso-pores ranging between 50 and 320 nm in average diameter and porosities up to 47% can be successfully formed for the range of materials tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen is considered one of the best energy sources. However, the lack of effective, stable, and safe storage materials has severely prevented its practical application. Strong effort has been made to try new nanostructured materials as new storage materials. In this study, oxygen-doped boron nitride (BN) nanosheets with 2-6 atomic layers, synthesized by a facile sol-gel method, show a storage capacity of 5.7wt% under 5MPa at room temperature, which is the highest hydrogen storage ever reported for any BN materials. Importantly, 89% of the stored hydrogen can be released when the hydrogen pressure is reduced to ambient conditions. Furthermore, the BN nanosheets exhibit an excellent storage cycling stability due to the stable two-dimensional nanostructure. The first principles calculations reveal that the high hydrogen storage mainly origins from the oxygen-doping of the BN nanosheets with increased adsorption energies of H2 on BN by 20-80% over pure BN sheets at the different coverage. © 2014 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A range of high-capacity Li-ion anode materials (conversion reactions with lithium) suffer from poor cycling stability and limited high-rate performance. These issues can be addressed through hybridization of multiple nanostructured components in an electrode. Using a Co3O4-Fe2O3/C system as an example, we demonstrate that the cycling stability and rate performance are improved in a hybrid electrode. The hybrid Co3O4-Fe2O3/C electrode exhibits long-term cycling stability (300 cycles) at a moderate current rate with a retained capacity of approximately 700 mAh g(-1). The reversible capacity of the Co3O4-Fe2O3/C electrode is still about 400 mAh g(-1) (above the theoretical capacity of graphite) at a high current rate of ca. 3 A g(-1), whereas Co3O4-Fe2O3, Fe2O3/C, and Co3O4/C electrodes (used as controls) are unable to operate as effectively under identical testing conditions. To understand the structure-function relationship in the hybrid electrode and the reasons for the enhanced cycling stability, we employed a combination of ex situ and in situ techniques. Our results indicate that the improvements in the hybrid electrode originate from the combination of sequential electrochemical activity of the transition metal oxides with an enhanced electronic conductivity provided by percolating carbon chains.