99 resultados para Nanofiber


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The starch nanofiber mats were prepared by electrospinning, and crosslinked by deal with glutaraldehyde vapor in a sealed containers. The morphology and structure of the fibers (before and after crosslinking) were characterized by SEM and FT-IR, and the properties of the product were measured by tensile test and contact angle measurements. Test results show that, acetalization reaction occurred between the intermolecular of glutaraldehyde and starch, the morphology of crosslinked fibers can be grossly preserved compared with the uncrosslinked starch fibers, and tensile properties and water resistance of the fiber mats have been greatly improved after glutaraldehyde crosslinking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrospun polyvinylidene fluoride (PVDF) nanofiber webs have shown great potential in making mechanical-to-electrical energy conversion devices. Previously, polyvinylidene fluoride (PVDF) nanofibers were produced either using near-field electrospinning (spinning distance < 1 cm) or conventional electrospinning (spinning distance > 8 cm). PVDF fibers produced by an electrospinning at a spinning distance between 1 and 8 cm (referred to as "short-distance" electrospinning in this paper) has received little attention. In this study, we have found that PVDF electrospun in such a distance range can still be fibers, although interfiber connection is formed throughout the web. The interconnected PVDF fibers can have a comparable β crystal phase content and mechanical-to-electrical energy conversion property to those produced by conventional electrospinning. However, the interfiber connection was found to considerably stabilize the fibrous structure during repeated compression and decompression for electrical conversion. More interestingly, the short-distance electrospun PVDF fiber webs have higher delamination resistance and tensile strength than those of PVDF nanofiber webs produced by conventional electrospinning. Short-distance electrospun PVDF nanofibers could be more suitable for the development of robust energy harvesters than conventionally electrospun PVDF nanofibers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A phase change material (PCM) from a mixture of plant oils was incorporated into electrospun poly(vinyl alcohol) (PVA) nanofibers using an emulsion electrospinning technique. Effects of PCM and PVA content in the emulsions on nanofiber morphology, heat properties, and phase change stability were examined. Higher PCM loadings in the nanofibers led to increased fiber diameter, gouged fiber surfaces, and higher heat enthalpies. The fibers maintained their morphological integrity even if the PCM melted. They showed reliable heat-regulating performance which can undergo at least 100 cycles of phase change. Such PCM fibers may be used for the development of thermoregulating fabrics or in passive heat storage devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogel nanofibers with high water-absorption capacity and excellent biocompatibility offer wide use in biomedical areas. In this study, hydrogel nanofibers from polyvinylpyrrolidone (PVP) and PVP/poly(acrylic acid) (PAA) blend were prepared by electrospinning and by subsequent heat treatment. The effects of post-electrospinning heat treatment and PVP/PAA ratio on hydrogel properties of the nanofibers were examined. Heat treatment at a temperature above 180°C was found to play a key role in forming insoluble and water-absorbent nanofibers. Both PVP and PVP/PAA nanofibers showed high morphology stability in water and excellent water retention capacity. The swelling ratio of PVP/PAA nanofibers declined with increasing heating temperature and decreasing PVP/PAA unit ratio. In comparison with dense casting films, these nanofiber membranes showed nearly doubled swelling ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mass production of nanofibers from needleless electrospinning shows great potential in research and development of nanofibers. However, how to improve the electrospinning performance so as to achieve high quality nanofibers is still of great challenge. In this study, airflow has been applied to optimize upward needleless electrospinning from ring spinneret. Effects of airflow speed and the position of airflow on the nanofiber quality and production rate have been investigated. It has been found that thinner and more uniform nanofibers were produced when airflow was applied to needleless electrospinning system. It also improved the collected nonwoven membrane, resulting in better nanofibrous structure of the as-spun nanofibers. Application of airflow on needleless electrospinning would further benefit the development of mass production of nanofibers from needleless electrospinning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The polymorphism and crystallinity of poly(vinylidene fluoride) (PVDF) membranes, made from electrospinning of the PVDF in pure N,N-dimethylformamide (DMF) and DMF/acetone mixture solutions are studied. Influence of the processing and solution parameters such as flow rate, applied voltage, solvent system, and mixture ratio, on nanofiber morphology, total crystallinity, and crystal phase content of the nanofibers are investigated using scanning electron microscopy, wide-angle X-ray scattering, differential scanning calorimetric, and Fourier transform infrared spectroscopy. The results show that solutions of 20% w/w PVDF in two solvent systems of DMF and DMF/acetone (with volume ratios of 3/1 and 1/1) are electrospinnable; however, using DMF/acetone volume ratio of 1/3 led to blockage of the needle and spinning process was stopped. Very high fraction of β-phase (∼79%-85%) was obtained for investigated nanofiber, while degree of crystallinity increased to 59% which is quite high due to the strong influence of electrospinning on ordering the microstructure. Interestingly, ultrafine fibers with the diameter of 12 and 15 nm were obtained in this work. Uniform and bead free nanofiber was formed when a certain amount of acetone was added in to the electrospinning solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we have proven that starch nanofibrous membranes with high tensile strength, water stability and non-cytotoxicity can be produced by electrospinning of starch solution and post-treatment with GTA in vapor phase. GTA vapor phase crosslinking plays a key role in forming water-stable nanofiber membrane and improving the mechanical properties. Comparing with non-crosslinked starch fibers, the crosslinked fibers are increased by nearly 10 times in tensile strength. The crosslinked starch fibrous membranes are non-cytotoxic. They may find applications in the fields of tissue engineering, pharmaceutical therapy and medical.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Directional fluid motion driven by the surface property of solid substrate is highly desirable for manipulating microfluidic liquid and collecting water from humid air. Studies on such liquid motion have been confined to dense material surfaces such as flat panels and single filaments. Recently, directional fluid transport through the thickness of thin porous materials has been reported by several research groups. Their studies not only attract fundamental, experimental and theoretical interest but also open novel application opportunities. This review article summarizes research progress in directional fluid transport across thin porous materials. It focuses on the materials preparation, basic properties associated with directional fluid transport in thin porous media, and their application development. The porous substrates, type of transporting fluids, structure-property attributes, and possible directional fluid transport mechanism are discussed. A perspective for future development in this field is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first use of organic ionic plastic crystals (OIPCs) as CO2 separation membranes is reported. The novel OIPC/PVDF nanofiber composites show CO2/N2 ideal selectivities of 30 at 35 °C. The dependence of gas permeability on the thermal phase of the plastic crystals is discussed.