107 resultados para MICROFLUIDIC CHIPS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article describes the manufacturing and characterisation of plano-convex miniaturised lenses using a CO2 laser engraving process in PMMA substrates. The technique allows for lenses to be fabricated rapidly and in a reproducible manner at depths of over 200 µm and for lens diameters of more than 3 mm. Experimental characterisation of the lens focal lengths shows good correlation with theory. The plano-convex lenses have been successfully embedded into capillary microfluidic systems alongside planar microlenses, allowing for a significant reduction of ancillary optics without a loss of detection sensitivity when performing fluorescence measurements. Such technology provides a significant step forward towards the portability of fluorescence- or luminescence-based systems for biological/chemical analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Communication devices with GPS chips allow people to generate large volumes of location data. However, location datasets have been confronted with serious privacy concerns. Recently, several privacy techniques have been proposed but most of them lack a strict privacy notion, and can hardly resist the number of possible attacks. This paper proposes a private release algorithm to randomize location datasets in a strict privacy notion, differential privacy. This algorithm includes three privacy-preserving operations: Private Location Clustering shrinks the randomized domain and Cluster Weight Perturbation hides the weights of locations, while Private Location Selection hides the exact locations of a user. Theoretical analysis on utility confirms an improved trade-off between the privacy and utility of released location data. The experimental results further suggest this private release algorithm can successfully retain the utility of the datasets while preserving users’ privacy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Mg2Si1-xSnx thermoelectric compounds were synthesized through a solid-state reaction at 700 °C between chips of Mg2Sn-Mg eutectic alloy and silicon fine powders. The Al dopants were introduced by employing AZ31 magnesium alloy that contains aluminum. The as-synthesized Mg2Si1-xSnx powders were consolidated by spark plasma sintering at 650-700 °C. X-ray diffraction and scanning electron microscopy revealed that the Mg2Si1-xSnx bulk materials were comprised of Si-rich and Sn-rich phases. Due to the complex microstructures, the electrical conductivities of Mg2Si1-xSnx are lower than Mg2Si. As a result, the average power factor of Al0.05Mg2Si0.73Sn0.27 is about 1.5 × 10-3 W/mK2 from room temperature to 850 K, being less than 2.5 × 10-3 W/mK2 for Al0.05Mg2Si. However, the thermal conductivity of Mg2Si1-xSnx was reduced significantly as compared to Al0.05Mg2Si, which enabled the ZT of Al0.05Mg2Si0.73Sn0.27 to be superior to Al0.05Mg2Si. Lastly, the electric power generation from one leg of Al0.05Mg2Si and Al0.05Mg2Si0.73Sn0.27 were evaluated on a newly developed instrument, with the peak output power of 15-20 mW at 300 °C hot-side temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates the chip formation mechanism and machinability of two-phase materials, such as, wrought duplex stainless steel alloys SAF 2205 and SAF 2507. SEM and optical microscopic details of the frozen cutting zone and chips revealed that the harder austenite phase dissipates in the advancement of the cutting tool, being effectively squeezed out of the softer ferrite phase. Microhardness profiles reveal correlation in hardness from the workpiece material transitioning to the chip. The tool wear (TiAIN + TiN coated solid carbide twist drill) and machining forces were investigated. Tool wear, was dominantly due to the adhesion process which developed from built-up edge formation, is highly detrimental to the flank face. Flute damage was also observed as a major issue in the drilling of duplex alloys leading to premature tool failure. Duplex 2507 shows higher sensitivity to cutting speed during machining and strain hardening at higher velocity and less machinability due to presence of higher percentage of Ni, Mo and Cr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of circulating tumor cells (CTCs) in disease diagnosis, prognosis, monitoring of the therapeutic efficacy, and clinical decision making is immense and has attracted tremendous focus in the last decade. We designed and fabricated simple, flat channel microfluidic devices polydimethylsiloxane (PDMS based) functionalized with locked nucleic acid (LNA) modified aptamers (targeting epithelial cell adhesion molecule (EpCAM) and nucleolin expression) for quick and efficient capture of CTCs and cancer cells. With optimized flow rates (10 μl/min), it was revealed that the aptamer modified devices offered reusability for up to six times while retaining optimal capture efficiency (>90%) and specificity. High capture sensitivity (92%) and specificity (100%) was observed in whole blood samples spiked with Caco-2 cells (10-100 cells/ml). Analysis of blood samples obtained from 25 head and neck cancer patients on the EpCAM LNA aptamer functionalized chip revealed that an average count of 5 ± 3 CTCs/ml of blood were captured from 22/25 samples (88%). EpCAM intracellular domain (EpICD) immunohistochemistry on 9 oral squamous cell carcinomas showed the EpICD positivity in the tumor cells, confirming the EpCAM expression in CTCs from head and neck cancers. These microfluidic devices also maintained viability for in vitro culture and characterization. Use of LNA modified aptamers provided added benefits in terms of cost effectiveness due to increased reusability and sustainability of the devices. Our results present a robust, quick, and efficient CTC capture platform with the use of simple PDMS based devices that are easy to fabricate at low cost and have an immense potential in cancer diagnosis, prognosis, and therapeutic planning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A low-cost system to generate, control and detect electrochemiluminescence using a mobile smartphone is described. A simple tone-detection integrated circuit is used to switch power sourced from the phone's Universal Serial Bus (USB) 'On-The-Go' (OTG) port, using audible tone pulses played over the device's audio jack. We have successfully applied this approach to smartphones from different manufacturers and with different operating system versions. ECL calibrations of a common luminophore, tris(2,2′-bipyridine)ruthenium(II) ([Ru(bpy)3]2+), with 2-(dibutylamino)ethanol (DBAE) as a co-reactant, showed no significant difference in light intensities when an electrochemical cell was controlled by a mobile phone in this manner, compared to the same calibration generated using a conventional potentiostat. Combining this novel approach to control the applied potential with the measurement of the emitted light through the smart phone camera (using an in-house built Android app), we explored the ECL properties of a water-soluble iridium(III) complex that emits in the blue region of the spectrum. The iridium(III) complex exhibited superior co-reactant ECL intensities and limits of detection to that of the conventional [Ru(bpy)3]2+ luminophore.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article correlates laboratory-based understanding in machining of titanium alloys with the industry based outputs and finds possible solutions to improve machining efficiency of titanium alloy Ti-6Al-4V. The machining outputs are explained based on different aspects of chip formation mechanism and practical issues faced by industries during titanium machining. This study also analyzed and linked the methods that effectively improve the machinability of titanium alloys. It is found that the deformation mechanism during machining of titanium alloys is complex and causes basic challenges, such as sawtooth chips, high temperature, high stress on cutting tool, high tool wear and undercut parts. These challenges are correlated and affected by each other. Sawtooth chips cause variation in cutting forces which results in high cyclic stress on cutting tools. On the other hand, low thermal conductivity of titanium alloy causes high temperature. These cause a favorable environment for high tool wear. Thus, improvements in machining titanium alloy depend mainly on overcoming the complexities associated with the inherent properties of this alloy. Vibration analysis kit, high pressure coolant, cryogenic cooling, thermally enhanced machining, hybrid machining and, use of high conductive cutting tool and tool holders improve the machinability of titanium alloy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Despite increased use of dietary pattern methods in nutritional epidemiology, there have been few direct comparisons of methods. Older adults are a particularly understudied population in the dietary pattern literature. This study aimed to compare dietary patterns derived by principal component analysis (PCA) and cluster analysis (CA) in older adults and to examine their associations with socio-demographic and health behaviours. METHODS: Men (n = 1888) and women (n = 2071) aged 55-65 years completed a 111-item food frequency questionnaire in 2010. Food items were collapsed into 52 food groups and dietary patterns were determined by PCA and CA. Associations between dietary patterns and participant characteristics were examined using Chi-square analysis. The standardised PCA-derived dietary patterns were compared across the clusters using one-way ANOVA. RESULTS: PCA identified four dietary patterns in men and two dietary patterns in women. CA identified three dietary patterns in both men and women. Men in cluster 1 (fruit, vegetables, wholegrains, fish and poultry) scored higher on PCA factor 1 (vegetable dishes, fruit, fish and poultry) and factor 4 (vegetables) compared to factor 2 (spreads, biscuits, cakes and confectionery) and factor 3 (red meat, processed meat, white-bread and hot chips) (mean, 95 % CI; 0.92, 0.82-1.02 vs. 0.74, 0.63-0.84 vs. -0.43, -0.50- -0.35 vs. 0.60 0.46-0.74, respectively). Women in cluster 1 (fruit, vegetables and fish) scored highest on PCA factor 1 (fruit, vegetables and fish) compared to factor 2 (processed meat, hot chips cakes and confectionery) (1.05, 0.97-1.14 vs. -0.14, -0.21- -0.07, respectively). Cluster 3 (small eaters) in both men and women had negative factor scores for all the identified PCA dietary patterns. Those with dietary patterns characterised by higher consumption of red and processed meat and refined grains were more likely to be Australian-born, have a lower level of education, a higher BMI, smoke and did not meet physical activity recommendations (all P < 0.05). CONCLUSIONS: PCA and CA identified comparable dietary patterns within older Australians. However, PCA may provide some advantages compared to CA with respect to interpretability of the resulting dietary patterns. Older adults with poor dietary patterns also displayed other negative lifestyle behaviours. Food-based dietary pattern methods may inform dietary advice that is understood by the community.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter investigates two important processing methods, such as welding and machine of duplex stainless steel. The welding process welding generally degrades the properties of these materials by redistributing the phases during melting and solidification. On the other hand, the redistribution during machining mainly take place combined effect of stress, strain rate and temperature. Mechanism of machining process and several welding methods has been analysed in details. It was found that outcomes of welding processes depend on the welding methods. Most of the cases an appropriate annealing process can be used to restore the expected properties of the weld joints though the parameters of annealing process are different in different welding methods. Nonmetallic inclusions and the low carbon content of duplex stainless steel reduce the machinability of duplex stainless steel. SEM and optical microscopic details of the frozen cutting zone and chips revealed that the harder austenite phase dissipates in the advancement of the cutting tool, being effectively squeezed out of the softer ferrite phase. Abrasion and adhesion were the most common wear modes developed on the flank and rake faces. Adhesion wear being the most prevalent on the flank face, appeared to be initiated by built-up edge formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 'taste of food' plays an important role in food choice. Furthermore, foods high in fat, sugar and salt are highly palatable and associated with increased food consumption. Research exploring taste importance on dietary choice, behaviour and intake is limited, particularly in young adults. Therefore, in this study a total of 1306 Australian university students completed questionnaires assessing dietary behaviors (such as how important taste was on food choice) and frequency of food consumption over the prior month. Diet quality was also assessed using a dietary guideline index. Participants had a mean age of 20 ± 5 years, Body Mass Index (BMI) of 22 ± 3 kg/m(2), 79% were female and 84% Australian. Taste was rated as being a very or extremely important factor for food choice by 82% of participants. Participants who rated taste as highly important, had a poorer diet quality (p = 0.001) and were more likely to consume less fruit (p = 0.03) and vegetables (p = 0.05). Furthermore, they were significantly more likely to consume foods high in fat, sugar and salt, including chocolate and confectionary, cakes and puddings, sweet pastries, biscuits, meat pies, pizza, hot chips, potato chips, takeaway meals, soft drink, cordial and fruit juice (p = 0.001-0.02). They were also more likely to consider avoiding adding salt to cooking (p = 0.02) and adding sugar to tea or coffee (p = 0.01) as less important for health. These findings suggest that the importance individuals place on taste plays an important role in influencing food choice, dietary behaviors and intake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Machining of titanium is quite difficult and expensive. Heat generated in the process of cutting does not dissipate quickly, which affects tool life. In the last decade ultra fine grained (UFG) titanium has emerged as an option for substitution for more expensive titanium alloys. Extreme grain refinement can be readily performed by severe plastic deformation techniques. Grain refinement of a material achieved in this way was shown to change its mechanical and physical properties. In the present study, the microstructure evolution and the shear band formation in chips of coarse grained and UFG titanium machined to three different depths and three different feeding rates was investigated. A change in thermal characteristics of commercial purity Ti with grain refinement was studied by comparing heating/cooling measurements with an analytical solution of the heat transfer boundary problem. It was demonstrated that an improvement in the machinability can be expected for UFG titanium. © 2012 Springer Science+Business Media, LLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Densification of metallic powders by means of extrusion is regarded as a very attractive processing technique that allows obtaining a high level of relative density of the compact. However, the uniformity of the relative density depends on that of strain distribution and on the processing parameters. Several variants of extrusion can be used for compaction of metal particulates, including the conventional extrusion (CE) and equal channel angular pressing (ECAP), often referred to as equal-channel angular extrusion. Each of these processes has certain advantages and drawbacks with respect to compaction. A comparative study of these two extrusion processes influencing the relative density of compacts has been conducted by numerical simulation using commercial finite element software DEFORM2D. The results have been validated by experiments with titanium and magnesium powders and chips.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a simple, environmentally friendly approach to fabricating superhydrophobic coatings with pH-induced wettability transition. The coatings are prepared from a mixture of silica nanoparticles and decanoic acid-modified TiO2. When the coating is applied on cotton fabric, the fabric turns superhydrophobic in air but superoleophilic in neutral aqueous environment. It is permeable to oil fluids but impermeable to water. However, when the coated fabric is placed in basic aqueous solution or ammonia vapor, it turns hydrophilic but underwater superoleophobic, thus allowing water to penetrate through but blocking oil. Therefore, such a unique, selective water/oil permeation feature makes the treated fabric have capability to separate either oil or water from a water-oil mixture. It may be useful for development of smart oil-water separators, microfluidic valves, and lab-on-a-chip devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To characterise clusters of individuals based on adherence to dietary recommendations and to determine whether changes in Healthy Eating Index (HEI) scores in response to a personalised nutrition (PN) intervention varied between clusters.

DESIGN: Food4Me study participants were clustered according to whether their baseline dietary intakes met European dietary recommendations. Changes in HEI scores between baseline and month 6 were compared between clusters and stratified by whether individuals received generalised or PN advice.

SETTING: Pan-European, Internet-based, 6-month randomised controlled trial.

SUBJECTS: Adults aged 18-79 years (n 1480).

RESULTS: Individuals in cluster 1 (C1) met all recommended intakes except for red meat, those in cluster 2 (C2) met two recommendations, and those in cluster 3 (C3) and cluster 4 (C4) met one recommendation each. C1 had higher intakes of white fish, beans and lentils and low-fat dairy products and lower percentage energy intake from SFA (P<0·05). C2 consumed less chips and pizza and fried foods than C3 and C4 (P<0·05). C1 were lighter, had lower BMI and waist circumference than C3 and were more physically active than C4 (P<0·05). More individuals in C4 were smokers and wanted to lose weight than in C1 (P<0·05). Individuals who received PN advice in C4 reported greater improvements in HEI compared with C3 and C1 (P<0·05).

CONCLUSIONS: The cluster where the fewest recommendations were met (C4) reported greater improvements in HEI following a 6-month trial of PN whereas there was no difference between clusters for those randomised to the Control, non-personalised dietary intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microfluidics is an emerging and promising interdisciplinary technology which offers powerful platforms for precise production of novel functional materials (e.g., emulsion droplets, microcapsules, and nanoparticles as drug delivery vehicles- and drug molecules) as well as high-throughput analyses (e.g., bioassays, detection, and diagnostics). In particular, multiphase microfluidics is a rapidly growing technology and has beneficial applications in various fields including biomedicals, chemicals, and foods. In this review, we first describe the fundamentals and latest developments in multiphase microfluidics for producing biocompatible materials that are precisely controlled in size, shape, internal morphology and composition. We next describe some microfluidic applications that synthesize drug molecules, handle biological substances and biological units, and imitate biological organs. We also highlight and discuss design, applications and scale up of droplet- and flow-based microfluidic devices used for drug discovery and delivery.