229 resultados para KNITTED FABRICS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three hemicyanine dyes were employed in dyeing acrylic fabrics following traditional cationic dyeing procedures. The influence of the substituting groups of the dye molecule on the sorption rate and sorption isotherms was analyzed. The results showed that those dyed acrylic fabrics using hemicyanine dyes had obvious fluorescent effect in the spectra range 550–750 nm. In addition, according to the EN-471 standard (2003), the chromaticity of dyed acrylic fabric was calculated to evaluate whether hemicyanine dye could meet the requirements of the fluorescent dye for high visibility warning clothing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this PhD project, the photostability and colour depth of photochromic fabrics prepared by a hybrid silica coating were improved and the relationship between the pore structure of the silica coatings and the photochromic properties of the coated fabrics was investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, fabrics having a superhydrophobic and superoleophobic surface were prepared by a wet-chemistry coating technique using a coating solution containing hydrolyzed fluorinated alkyl silane and fluorinated-alkyl polyhedral oligomeric silsesquioxane. The coating shows remarkable self-healing superhydrophobic and superoleophobic properties and excellent durability against UV light, acid, repeated machine washes, and severe abrasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we demonstrate that fabrics having a wettability gradient from superhydrophobic to hydrophilic through the thickness direction show a novel directional water transfer effect: water can transfer from the superhydrophobic to the hydrophilic side, but not in the opposite direction unless an external force is applied. A sol–gel technology was used to prepare a nano-structured superhydrophobic coating on fabrics, and the coated fabrics showed water contact-angle as high as 165 degrees. When the coated fabric was subjected to a photochemistry treatment from one fabric side, the irradiated surface turned hydrophilic permanently, while the back side still maintained the superhydrophobicity. The treated fabric can transfer water droplet rapidly from hydrophobic to hydrophilic side, and the pressure allowing water breakthrough the fabric are different considerably between the two fabric sides. The directional water transfer effect is affected by the wettability gradient. Such a directional water transfer coating may be useful to develop new functional fabrics for defence applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A robust, superamphiphobic fabric with a novel self-healing ability to autorepair from chemical damage is prepared by a two-step wet-chemistry coating technique using an easily available material system consisting of poly(vinylidene fluoride-co-hexafluoropropylene), fluoroalkyl silane, and modified silica nanoparticles. The coated fabrics can withstand at least 600 cycles of standard laundry and 8000 cycles of abrasion without apparently changing the superamphiphobicity. The coating is also very stable to strong acid/base, ozone, and boiling treatments. After being damaged chemically, the coating can restore its super liquid-repellent properties by a short-time heating treatment or room temperature ageing. This simple but novel and effective coating system may be useful for the development of robust protective clothing for various applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiwalled carbon nanotubes (MWCNTs) were dispersed in an aqueous solution of epichlohydrin based resin with the aid of a surfactant. The MWCNT-resin solutions were applied onto cotton fabrics to form a thin coating with different MWCNT contents (0, 11.1, 20.0, 33.3, and 50%). The thermal conductivity of the fabrics was measured based on the Newton’s law of cooling. The coating containing 50% MWCNTs showed 151% increase in the thermal conductivity. Infrared thermography was used to characterize the heating/cooling behavior of the fabrics. On contact with a 50°C hot surface, coated fabric that had 50% MWCNTs in the coating layer showed a 3.9°C lower equilibrium surface temperature than the untreated fabric. The cooling rate increased with increasing the MWCNT content within the coating layer. Such an effective cooling performance was attributed to the increased thermal conductivity and surface emissivity of the MWCNT-containing coating layer. The coating showed little influence on water contact angle of the coated fabrics, but slightly decreased the air permeability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trans-4- [p- (N, N-Die (2-hydroxyethyl)) styryl] -N- ethyl pyridinium bromide (DHEASPBr-C2), a hemicyanine fluorescent dye, was encapsulated into silica nanoparticles by co-hydrolysis and co-condensation of organosilanes in the presence of the dye. The dye containing silica nanoparticles were applied onto cotton fabrics. Scanning electron microscopy (SEM), UV–vis spectra, single-photon emission fluorescence spectra and reflectance spectra of the samples were characterized. The SEM results showed that the particle size (ranging from 100-200 nm) and dye encapsulating (1.5-8.1 mg dye per g silica matrix) could be adjusted by the concentration of fluorescent dye and organosilanes. The reflectance of the treated cotton fabrics showed that there were obvious adsorption spectra in 410 - 540 nm and emission spectra in 560 - 700 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene, multi-wall carbon nanotube (MWCNT) and fine boron nitride (BN) particles were separately applied with a resin onto a cotton fabric, and the effect of the thin composite coatings on the thermal conductive property, air permeability, wettability and color appearance of the cotton fabric was examined. The existence of the fillers within the coating layer increased the thermal conductivity of the coated cotton fabric. At the same coating content, the increase in fabric thermal conductivity was in the order of graphene > BN > MWCNT, ranging from 132 % to 842 % (based on pure cotton fabric). The coating led to 73 %, 69 % and 64 % reduction in air permeability when it respectively contained 50.0 wt% graphene, BN and MWCNTs. The graphene and MWCNT treated fabrics had a black appearance, but the coating had almost no influence on the fabric hydrophilicity. The BN coating made cotton fabric surface hydrophobic, with little change in fabric color.