96 resultados para Inflammation mediators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Inflammatory mediators are key players in the pathogenesis of osteoarthritis (OA) and bone destruction. Conventional drugs suppress symptomatic activity and have no therapeutic influence on disease. Cissus quadrangularis and Withania somnifera are widely used for the treatment of bone fractures and wounds; however, the cellular and molecular mechanisms regulated by these herbals are still unclear. METHODS: We established an in vitro OA culture model by exposing human chondrocytes to proinflammatory cytokine and interleukin (IL)-1β for 36 hours prior to treatment with the herbals: C. quadrangularis, W. somnifera, and the combination of the two herbals. Cell viability, toxicity, and gene expression of OA modifying agents were examined. In addition, expression of survivin, which is crucial for cell growth, was analyzed. In vivo work on osteotomized rats studied the bone and cartilage regenerative effects of C. quadrangularis, W. somnifera, and the combination therapy. RESULTS: Exposure of chondrocytes to IL-1β induced significant toxicity and cell death. However, herbal treatment alleviated IL-1β induced cell toxicity and upregulated cell growth and proliferation. C. quadrangularis inhibited gene expression of cytokines and matrix metalloproteinases, known to aggravate cartilage and bone destruction, and augmented expression of survivin by inhibiting p38 MAPK. Interestingly, osteotomized rats treated with C. quadrangularis drastically enhanced alkaline phosphatase and cartilage tissue formation as compared to untreated, W. somnifera only, or the combination of both herbals. CONCLUSION: Our findings demonstrate for the first time the signaling mechanisms regulated by C. quadrangularis and W. somnifera in OA and osteogenesis. We suggest that the chondroprotective effects and regenerative ability of these herbals are via the upregulation of survivin that exerts inhibitory effects on the p38 MAPK signaling pathway. These findings thus validate C. quadrangularis as a potential therapeutic for rheumatic disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hormesis encompasses the notion that low levels of stress stimulate or upregulate existing cellular and molecular pathways that improve the capacity of cells and organisms to withstand greater stress. This notion underlies much of what we know about how exercise conditions the body and induces long-term adaptations. During exercise, the body is exposed to various forms of stress, including thermal, metabolic, hypoxic, oxidative, and mechanical stress. These stressors activate biochemical messengers, which in turn activate various signaling pathways that regulate gene expression and adaptive responses. Historically, antioxidant supplements, nonsteroidal anti-inflammatory drugs, and cryotherapy have been favored to attenuate or counteract exercise-induced oxidative stress and inflammation. However, reactive oxygen species and inflammatory mediators are key signaling molecules in muscle, and such strategies may mitigate adaptations to exercise. Conversely, withholding dietary carbohydrate and restricting muscle blood flow during exercise may augment adaptations to exercise. In this review article, we combine, integrate, and apply knowledge about the fundamental mechanisms of exercise adaptation. We also critically evaluate the rationale for using interventions that target these mechanisms under the overarching concept of hormesis. There is currently insufficient evidence to establish whether these treatments exert dose-dependent effects on muscle adaptation. However, there appears to be some dissociation between the biochemical/molecular effects and functional/performance outcomes of some of these treatments. Although several of these treatments influence common kinases, transcription factors, and proteins, it remains to be determined if these interventions complement or negate each other, and whether such effects are strong enough to influence adaptations to exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Alzheimer's disease (AD) is one of the untreatable neurodegenerative diseases characterised by the pathologic amyloid plaque deposition and inflammation. The aim of this study is to evaluate the neuroprotective effects of nanoformulated SurR9-C84A, a survivin mutant belonging to the inhibitors of the apoptosis (IAP) protein family. The effect of SurR9-C84A was studied against the β-amyloid toxicity and various inflammatory insults in the differentiated SK-N-SH neurons. METHOD: SurR9-C84A loaded poly(lactic-co-glycolic acid) nanoparticles were prepared following the modified double emulsion technique. The neuroprotective effect of SurR9-C84A was evaluated against the amyloid-β (Aβ) peptide fragment, N-methyl-D-aspartate (NMDA) toxicity and the inflammatory assaults. To mimic the in vivo situation, a co-culture of neurons and microglia was also studied to validate these results. RESULTS: SurR9-C84A treatments showed improved neuronal health following Aβ, and NMDA toxicity in addition to inflammatory insults induced in mono and co-cultures. The neuroprotective effect was evident with the reduced neuronal death, accelerated expression of neuronal integrity markers (neurofilaments, beta-tubulin III etc.,) and the neuroprotective ERK/MAPK signalling. CONCLUSION: The current results demonstrated that the SurR9-C84A nanoformulation was very effective in rescuing the neurons and holds a potential future application against AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glutathione (GSH) has a crucial role in cellular signaling and antioxidant defenses either by reacting directly with reactive oxygen or nitrogen species or by acting as an essential cofactor for GSH S-transferases and glutathione peroxidases. GSH acting in concert with its dependent enzymes, known as the glutathione system, is responsible for the detoxification of reactive oxygen and nitrogen species (ROS/RNS) and electrophiles produced by xenobiotics. Adequate levels of GSH are essential for the optimal functioning of the immune system in general and T cell activation and differentiation in particular. GSH is a ubiquitous regulator of the cell cycle per se. GSH also has crucial functions in the brain as an antioxidant, neuromodulator, neurotransmitter, and enabler of neuron survival. Depletion of GSH leads to exacerbation of damage by oxidative and nitrosative stress; hypernitrosylation; increased levels of proinflammatory mediators and inflammatory potential; dysfunctions of intracellular signaling networks, e.g., p53, nuclear factor-κB, and Janus kinases; decreased cell proliferation and DNA synthesis; inactivation of complex I of the electron transport chain; activation of cytochrome c and the apoptotic machinery; blockade of the methionine cycle; and compromised epigenetic regulation of gene expression. As such, GSH depletion has marked consequences for the homeostatic control of the immune system, oxidative and nitrosative stress (O&NS) pathways, regulation of energy production, and mitochondrial survival as well. GSH depletion and concomitant increase in O&NS and mitochondrial dysfunctions play a role in the pathophysiology of diverse neuroimmune disorders, including depression, myalgic encephalomyelitis/chronic fatigue syndrome and Parkinson’s disease, suggesting that depleted GSH is an integral part of these diseases. Therapeutical interventions that aim to increase GSH concentrations in vivo include N-acetyl cysteine; Nrf-2 activation via hyperbaric oxygen therapy; dimethyl fumarate; phytochemicals, including curcumin, resveratrol, and cinnamon; and folate supplementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Discrimination is a social determinant of health; however, the pathways linking discrimination to ill-health are under-researched. This study investigated the mediators through which discrimination affects health behaviours and physical health outcomes, as well as assessed whether sex moderated these mechanisms. METHODS: Data from a representative survey (n = 1023) of undergraduate students enrolled in a Brazilian university in 2012 were used. Structural equation models were applied to assess the following mediation mechanisms--(1) discrimination influences self-rated health and body mass index via anxiety/depression; (2) discrimination affects behaviours (alcohol consumption, problem drinking, smoking, fruit/vegetable consumption, and physical activity) through discomfort associated with discriminatory experiences. The potential of sex to act as an effect-modifying variable was also explored in each of the postulated pathways. RESULTS: The effect of discrimination on self-rated poor health was totally (100.0%) mediated by anxiety/depression, while body mass index was not correlated with discrimination. Self-reported discrimination was associated with some behaviours via discomfort. Particularly, discomfort partially mediated the positive association between discrimination, leisure time physical activity (43.3%), and fruit/vegetable consumption (52.2%). Sex modified the association between discrimination, discomfort and physical activity in that such mechanism (more discrimination → more discomfort → more physical activity) was statistically significant in the entire sample and among females, but not among males. CONCLUSIONS: This is one of the first studies to demonstrate that discrimination is associated with physical health outcomes and behaviours via distinct pathways. Future investigations should further explicate the mediational pathways between discrimination and key health outcomes.