174 resultados para Fibre nonlinearity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, fibre-diameter-dependent light scattering during measurement of wool colour was quantified using the extended multiplicative signal correction technique. Furthermore, a simple-to-apply model has been developed to correct each of the CIE (International Commission on Illumination) X, Y and Z values obtained from colour measurement of fibrous masses. The model was successfully applied to both polypropylene (PP) and wool fibres, though different parameter values were used in each case, indicating different patterns of internal light scattering between PP and wool fibres. After the model corrections, the diameter dependence of measured wool yellowness (Y - Z) was either eliminated or significantly reduced for each of seven sheep flocks distributed widely over the wool-growing regions of Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fibre generator shape and dimension are key factors affecting the needleless electrospinning process and fibre fineness. In this work, cylinder with rounded rim, disc and ball were used as spinnerets to electrospin polyvinyl alcohol and polyacrylonitrile solutions. A finite element method was used to analyse how the spinneret geometry affected the electric field generated during electrospinning and the associated changes in fibre diameter and productivity. For cylinder spinnerets, increasing the rim radius reduced the discrepancy of electric field intensity between the cylinder end and middle area, which affected the fibre productivity. The electrospinning failed to operate when the rim radius was over 20 mm. With decreasing cylinder diameter, the electric field intensity in the middle area increased, improving the fibre productivity. Thinner disc spinnerets increased the electric field intensity, resulting in finer nanofibres and higher productivities. Ball spinnerets produced evenly distributed electric field, but failed to electrospin fibres when the diameters were below 60 mm. It has been found that strong and narrowly distributed electric field in the fibre-generating area can significantly facilitate the mass production of quality nanofibres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Out-of-autoclave processing parameters were tailored to investigate the effect of resin viscosity on mechanical performance. Faster heating rates improved the shear and fracture mechanisms of carbon fibre composites by improving their fibre to matrix adhesion, as a result of a decrease in resin viscosity.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrospun nanofibres have emerged as important fibrous materials for diverse applications. They have been shown excellent toughening results when they are applied as interlayer materials between carbon/epoxy laminas in the structural carbon fibre reinforced epoxy matrix composites. They also exhibit synergistic modification effects when they are combined with carbon nanofibres in the thermosetting polymer matrix. In this study, electrospun polyetherketone cardo (PEK-C) nanofibres were used in two ways: directly electrospun onto the surface of carbon fabric [1], and blended with epoxy resin in the form of PEK-C/VGCNF (vapour grown carbon nanofibre) composite nanofibres[2].The interlaminar fracture toughness, flexural properties and thermal mechanical properties of the modified systems were investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work has focused on measuring the adhesion forces on both untreated and atmospheric helium plasma treated single jute fibre surfaces using scanning probe microscopy (SPM). The measurements were conducted on three differently aged surfaces for one week, three weeks and six weeks using a standard silicon nitride tip in force-volume (f-v) mode. Up to 256 adhesion data points were collected from various locations on the surface of the studied fibres using in-house developed software and the resulting data were statistically analysed by the histogram method. Results obtained from this analysis method were found to be very consistent with a small statistical variation. The work of adhesion, Wa, was calculated from measured adhesion force using the Johnson–Kendall–Roberts (JKR) and Derjaguin–Muller–Toporov (DMT) models. Increases in both adhesion force and work of adhesion were observed on jute fibre with certain levels of atmospheric plasma treatment and ageing time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interlaminar toughening of a carbon fibre reinforced composite by interleaving a thin layer (~20 microns) of poly(hydroxyether of bisphenol A) (phenoxy) nanofibres was explored in this work. Nanofibres, free of defect and averaging several hundred nanometres, were produced by electrospinning directly onto a pre-impregnated carbon fibre material (Toray G83C) at various concentrations between 0.5 wt % and 2 wt %. During curing at 150 °C, phenoxy diffuses through the epoxy resin to form a semi interpenetrating network with an inverse phase type of morphology where the epoxy became the co-continuous phase with a nodular morphology. This type of morphology improved the fracture toughness in mode I (opening failure) and mode II (in-plane shear failure) by up to 150% and 30%, respectively. Interlaminar shear stress test results showed that the interleaving did not negatively affect the effective in-plane strength of the composites. Furthermore, there was some evidence from DMTA and FT-IR analysis to suggest that inter-domain etherification between the residual epoxide groups with the pendant hydroxyl groups of the phenoxy occurred, also leading to an increase in glass transition temperature (~7.5 °C).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein fibers such as silk and wool have been used as textile fibers for centuries. It is only in recent years that these fibers have been converted into fine powder forms for non-textile applications. This presentation will cover our recent research in protein fiber powders. Ultra-fine powders from different protein fibers have been produced using a combination of media and non media milling techniques. New application examples of these fine powders are discussed. These applications include hybrid fibers combining the advantages of natural and synthetic polymer fibers, tissue engineering composite scaffolds with enhanced biomechanical properties, and metal ion absorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compared to the neat matrix material, FRC has highly favorable mechanical properties, and their strength-to-weight ratios are superior. In addition, FRCs have potential for use in many applications in dentistry and are expected to gain increasing applications in the future. This book includes both review and research papers in different FRC areas from contributors around the world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protein structures of wool, treated in fabric form with ultrasonics for different time durations, were analysed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR), in comparison with the wool without ultrasonic treatment. Fabric water absorption and tensile properties were measured in addition to the fibre micro-structure analysis. It is shown that while the ultrasonic treatment had little effect on the fibre crystallinity, some chemical structures in the protein were altered to some extent during the process. Disruption of fibre internal waxy lipids upon ultrasonic treatment provided the fibres with increased water absorption. Protein chains in the macro fibrils were shown to be rearranged to a more regular and less flexible structure, as a result of the ultrasonic treatment. Fabric tensile tests showed an increased tenacity and a reduced extensibility to the ultrasonically treated fabric. Prolonged ultrasonic treatment, however, significantly reduced both fabric tenacity and extensibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective prediction of the long-term performance of natural fibre-reinforced cementitious materials is vital for their application. In this study, coir fibres of two different average lengths were combined with cementitious materials and chemical agents to form coir fibre-reinforced cementitious composites (CFRCCs). The composites long-term performance was assessed and compared with two different accelerated ageing processes, i.e. a cement-saturated water ageing, and alternate freeze-thaw ageing. The flexural properties were compared with the properties of the reference mortar. Overall, the flexural strength of 400 days naturally aged CFRCC specimens was weaker than that of the reference mortar. The toughness and ductility of the fibre-reinforced specimens, however, improved. The cement-saturated water ageing method gave a precise prediction of the flexural strength development of 400-day-old specimens, and the freeze-thaw ageing method worked very well for the toughness performance estimation of CFRCCs.