194 resultados para Fatty acids - Biochemistry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barramundi (Lates calcarifer), a catadromous teleost of commercial interest, perform well when fed a wide range of dietary oils. However, the range of alternative oils now being explored is typically rich in saturated and monounsaturated fatty acids (SFA and MUFA). In this study, the response of juvenile barramundi (47.0 g per fish initial weight) fed isolipidic and isoenergetic diets with 82 g kg−1 added oil was tested. The experimental test diets had a 2 : 1 or 1 : 2 ratio of SFA to MUFA (SFA-D and MUFA-D, respectively) compared to a control diet (CTRL-D) fed for 8 weeks. The diets containing mostly olive oil (dietary MUFA-D) and mostly refined palm oil (dietary SFA-D) did not impact the growth performance or feed utilization parameters of the barramundi. The in vivo beta-oxidation activity was consistent with the dietary fatty acid composition, with the most dominant FA being heavily beta-oxidized. Together, the in vivo whole-body mass balance of fatty acids showed that n-3 long-chain polyunsaturated fatty acids (LC-PUFA) were most efficiently utilized in the SFA-D- and MUFA-D-fed fish. This study provides evidence that additional dietary MUFA and SFA are suitable lipid classes for juvenile barramundi and they are both equally efficient at sparing LC-PUFA from an oxidative fate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The applications of Omega-3 fatty acids for human health are rapidly expanding, which necessitates exploring alternative sources to fish. Many marine microorganisms across different kingdoms exhibit the ability to store a significant oil content, however are difficult to cultivate. Out of all marine microbes, thraustochytrids are considered a good source for the production of high value compounds such as polyunsaturated fatty acids (PUFAs). Optimization of culture conditions will be helpful in further enhancing cellular lipid content to suit fatty acid synthesis. This chapter describes some recent advances in the development of marine microbes for fatty acid production with a special emphasis upon thraustochytrids for biotechnological applications, focussing particularly on methods to enhanced docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent times, allergy has become a financial, physical andpsychological burden to the society as a whole. Allergic reactions can result in life-threatening situations causing morbidity and high economic cost. Therefore, more effective reagents are needed for allergy treatment. Literature suggests that a causal relationship exists between the intake of Omega-3/6 fatty acids such as DHA, EPA, DPA and AA and atopic individuals suffering from allergies. In an allergic cascade, cytokines IL-4 and IL-13 bind to IL-4 receptor (IL-4R), which activates the STAT6 phosphorylation pathway leading to gene activation of allergen-specific IgE production by B cells. The overall aim of this study is to characterise Omega-3/6 fatty acids and their effects on IgE production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent times, allergy has become a financial, physical and psychological burden to the society as a whole. Allergic reactions can result in life-threatening situations causing morbidity and high economic cost. Therefore, more effective reagents are needed for allergy treatment. Omega-6 fatty acids have gained attention in allergic studies mainly due to their inflammatory properties. Literature suggests that a causal relationship exists between the intake of omega-6 fatty acids such as DPA and AA and atopic individuals suffering from allergies. In an allergic cascade, cytokines IL-4 and IL-13 bind to IL-4 receptor (IL-4R), which activates the STAT6 phosphorylation pathway leading to gene activation of allergen-specific IgE production by B cells. Consequently, IgE production leads to clinical symptoms of allergy. The overall aim of this study is to characterise DPA and AA and their effects on IgE production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter will evaluate the European Union (EU) approved health claim related to foods with low or reduced amounts of saturated fatty acids (SFAs) and maintenance of normal blood LDL-cholesterol concentrations, that was reviewed by the European Food Safety Authority (EFSA) in 2011 (EFSA, 2011). The characterisation of the food constituent, the scientific substantiation for the health claim and the conditions of use will be defined and evaluated. The wider impact of this claim will be discussed in relation to consumer issues, product development and future trends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the study was to assess whether omega-3 polyunsaturated fatty acid supplementation alone or in combination with folic acid and B-group vitamins is effective in lowering homocysteine. The Medline Ovid, Embase and Cochrane databases were searched for randomized-controlled trial studies that intervened with omega-3 supplementation (with or without folic acid) and measured changes in homocysteine concentration. Studies were pooled using a random effects model for meta-analysis. Three different models were analyzed: all trials combined, omega-3 polyunsaturated fatty acid trials, and omega-3 polyunsaturated fatty acids with folic acid and B-group vitamin trials. Nineteen studies were included, consisting of 3267 participants completing 21 trials. Studies were heterogeneous; varying by dose, duration and participant health conditions. Across all trials, omega-3 supplementation was effective in lowering homocysteine by an average of 1.18μmol/L (95%CI: (-1.89, -0.48), P=.001). The average homocysteine-lowering effect was greater when omega-3 supplementation was combined with folic acid and B-group vitamins (-1.37μmol/L, 95%CI: (-2.38, -0.36), P<.01) compared to omega-3 supplementation alone (-1.09μmol/L 95%CI: (-2.04, -0.13), P=.03). Omega-3 polyunsaturated fatty acid supplementation was associated with a modest reduction in homocysteine. For the purposes of reducing homocysteine, a combination of omega-3s (0.2-6g/day), folic acid (150 - 2500μg/day) and vitamins B6 and B12 may be more effective than omega-3 supplementation alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a growing awareness that gut commensal metabolites play a major role in host physiology and indeed the pathophysiology of several illnesses. The composition of the microbiota largely determines the levels of tryptophan in the systemic circulation and hence, indirectly, the levels of serotonin in the brain. Some microbiota synthesize neurotransmitters directly, e.g., gamma-amino butyric acid, while modulating the synthesis of neurotransmitters, such as dopamine and norepinephrine, and brain-derived neurotropic factor (BDNF). The composition of the microbiota determines the levels and nature of tryptophan catabolites (TRYCATs) which in turn has profound effects on aryl hydrocarbon receptors, thereby influencing epithelial barrier integrity and the presence of an inflammatory or tolerogenic environment in the intestine and beyond. The composition of the microbiota also determines the levels and ratios of short chain fatty acids (SCFAs) such as butyrate and propionate. Butyrate is a key energy source for colonocytes. Dysbiosis leading to reduced levels of SCFAs, notably butyrate, therefore may have adverse effects on epithelial barrier integrity, energy homeostasis, and the T helper 17/regulatory/T cell balance. Moreover, dysbiosis leading to reduced butyrate levels may increase bacterial translocation into the systemic circulation. As examples, we describe the role of microbial metabolites in the pathophysiology of diabetes type 2 and autism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drs Dietz and Scanlon advocated further reduction of industrially produced TFAs from all food products. The evidence that TFAs increase the risk of coronary heart disease (CHD), particularly at substantially low levels (1%-3% of total energy consumption), is compelling. In contrast, there are no known health benefits of industrially produced TFAs, and we believe their use in food products should be minimized or eliminated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Allergic reactions can result in life-threatening situations resulting in high economic costs and morbidity. Therefore, more effective reagents are needed for allergy treatment. A causal relationship has been suggested to exist between the intake of omega-3/6 fatty acids, such as docosahexanoic acid (DHA), eicosapentanoic acid (EPA), docosapentanoic acid (DPA) and arachidonic acid (AA), and atopic individuals suffering from allergies. In allergic cascades, the hallmark cytokine IL-4 bind to IL-4 receptor (IL-4R) and IL-13 binds to IL-13 receptor (IL-13R), this activates the STAT6 phosphorylation pathway leading to gene activation of allergen-specific IgE antibody production by B cells. The overall aim of this study was to characterize omega-3/6 fatty acids and their effects on STAT6 signaling pathway that results in IgE production in allergic individuals. METHODS: The fatty acids were tested in vitro with a HEK-Blue IL-4/IL-13 reporter cell line model, transfected with a reporter gene that produces an enzyme, secreted embryonic alkaline phosphatase (SEAP). SEAP acts as a substitute to IgE when cells are stimulated with bioactive cytokines IL-4 and/or IL-13. RESULTS: We have successfully used DHA, EPA and DPA in our studies that demonstrated a decrease in SEAP secretion, as opposed to an increase in SEAP secretion with AA treatment. A statistical Student's t-test revealed the significance of the results, confirming our initial hypothesis. CONCLUSION: We have successfully identified and characterised DHA, EPA, DPA and AA in our allergy model. While AA was a potent stimulator, DHA, EPA and DPA were potential inhibitors of IL-4R/IL-13R signalling, which regulates the STAT6 induced pathway in allergic cascades. Such findings are significant in the future design of dietary therapeutics for the treatment of allergies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To improve consumption of omega-3 fatty acids, foods can be enriched with omega-3 rich oils. Microencapsulation of omega-3 oils minimizes oxidative deterioration and allows their use in stable and easy-to-handle form. Microencapsulation of omega-3 fatty acids can be achieved by using a variety of methods, with the two most commonly used commercial processes being complex coacervation and spray dried emulsions. A variety of other methods are in development including spray chilling, extrusion coating and liposome entrapment. The key parameter in any of these processes is the selection of wall material. For spray dried emulsions and complex coacervates protein or polysaccharides are primarily used as shell material, although complex coacervation is currently commercially limited to gelatin. Here we review the need for microencapsulation of omega-3 oils, methods of microencapsulation and analysis, and the selection of shell material components. In particular, we discuss the method of complex coacervation, including its benefits and limitations. This review highlights the need for research on the fundamentals of interfacial and complexation behaviour of various proteins, gums and polyphenols to encapsulate and deliver omega-3 fatty acids, particularly with regard to broadening the range of shell materials that can be used in complex coacervation of omega-3 rich oils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are now several examples of plant species engineered to synthesize and accumulate nutritionally important polyunsaturated fatty acids in their seed triacylglycerols (TAG). The utilization of TAG in germinating seeds of such transgenic plants was unknown. In this study, we examined the TAG utilization efficiency during seed germination in transgenic Arabidopsis seeds containing several examples of these fatty acids. Seed TAG species with native fatty acids had higher utilization rate than the TAG species containing transgenically produced polyunsaturated fatty acids. Conversely, quantification of the fatty acid components remaining in the total TAG after early stages of seed germination revealed that the undigested TAGs tended to contain elevated levels of the engineered polyunsaturated fatty acids (PUFA). LC-MS analysis further revealed asymmetrical mobilization rates for the individual TAG species. TAGs which contained multiple PUFA fatty acids were mobilized slower than the species containing single PUFA. The mobilized engineered fatty acids were used in de novo membrane lipid synthesis during seedling development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the study was to determine optimum inlet and outlet air temperatures of spray process for producing co-microcapsules containing omega-3 rich tuna oil and probiotic bacteria L. casei. These co-microcapsules were produced using whey protein isolate and gum Arabic complex coacervates as shell materials. Improved bacterial viability and oxidative stability of omega-3 oil were used as two main criteria of this study. Three sets of inlet (130°C, 150°C, and 170°C) and outlet (55°C, 65°C, and 75°C) air temperatures were used in nine combinations to produce powdered co-microcapsule. The viability of L. casei, oxidative stability of omega-3 oil, surface oil, oil microencapsulation efficiency, moisture content, surface elemental composition and morphology of the powdered samples were measured. There is no statistical difference in oxidative stability at two lower inlet air temperatures (130°C and 150°C). However, there was a significant decrease in oxidative stability when higher inlet temperature (170°C) was used. The viability of L. casei decreased with the increase in the inlet and outlet air temperatures. There was no difference in the surface elemental compositions and surface morphology of powdered co-microcapsules produced under these nine inlet/outlet temperature combinations. Of the range of conditions tested the co-microcapsules produced at inlet-outlet temperature 130–65°C showed the highest bacterial viability and oxidative stability of omega-3 and having the moisture content of 4.93 ± 0.05% (w/w). This research shows that powdered co-microcapsules of probiotic bacteria and omega-3 fatty acids with high survival of the former and high stability against oxidation can be produced through spray drying.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intestinal fatty acid-binding protein (I-FABP) is a small protein that binds long-chain dietary fatty acids in the cytosol of the columnar absorptive epithelial cells (enterocytes) of the intestine. The binding cavity of I-FABP is much larger than is necessary to bind a fatty acid molecule, which suggests that the protein may be able to bind other hydrophobic and amphipathic ligands such as lipophilic drugs. Herein we describe the binding of three structurally diverse lipophilic drugs, bezafibrate, ibuprofen (both R- and S-isomers) and nitrazepam to I-FABP. The rank order of affinity for I-FABP determined for these compounds was found to be R-ibuprofen {approx} bezafibrate > S-ibuprofen >> nitrazepam. The binding affinities were not directly related to aqueous solubility or partition coefficient of the compounds; however, the freely water-soluble drug diltiazem showed no affinity for I-FABP. Drug-I-FABP interaction interfaces were defined by analysis of chemical shift perturbations in NMR spectra, which revealed that the drugs bound within the central fatty acid binding cavity. Each drug participated in a different set of interactions within the cavity; however, a number of common contacts were observed with residues also involved in fatty acid binding. These data suggest that the binding of non-fatty acid lipophilic drugs to I-FABP may increase the cytosolic solubility of these compounds and thereby facilitate drug transport from the intestinal lumen across the enterocyte to sites of distribution and metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is known that fatty acids (FA) regulate lipid metabolism by modulating the expression of numerous genes. In order to gain a better understanding of the effect of individual FA on lipid metabolism related genes in rainbow trout (Oncorhynchus mykiss), an in vitro time-course study was implemented where twelve individual FA (butyric 4:0; caprylic 8:0; palmitic (PAM) 16:0; stearic (STA) 18:0; palmitoleic16:1n-7; oleic 18:1n-9; 11-cis-eicosenoic 20:1n-9; linoleic (LNA) 18:2n-6; α-linolenic (ALA) 18:3n-3; eicosapentenoic (EPA) 20:5n-3; docosahexaenoic (DHA) 22:6n-3; arachidonic (ARA) 20:4n-6) were incubated in rainbow trout liver slices. The effect of FA administration over time was evaluated on the expression of leptin, PPARα and CPT-1 (lipid oxidative related genes). Leptin mRNA expression was down regulated by saturated fatty acids (SFA) and LNA, and was up regulated by monounsaturated fatty acids (MUFA) and long chain PUFA, whilst STA and ALA had no effect. PPARα and CPT-1mRNA expression were up regulated by SFA, MUFA, ALA, ARA and DHA; and down regulated by LNA and EPA. These results suggest that there are individual and specific FA induced modifications of leptin, PPARα and CPT-1 gene expression in rainbow trout, and it is envisaged that such results may provide highly valuable information for future practical applications in fish nutrition.