101 resultados para EXERCISE PERFORMANCE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study assessed the accumulated effect of ambient heat on the performance of, and physiological and perceptual responses to, intermittent, simulated wildfire fighting tasks over three consecutive days. Firefighters (n = 36) were matched and allocated to either the CON (19°C) or HOT (33°C) condition. They performed three days of intermittent, self-paced simulated firefighting work, interspersed with physiological testing. Task repetitions were counted (and converted to distance or area) to determine work performance. Participants were asked to rate their perceived exertion and thermal sensation after each task. Heart rate, core temperature (Tc), and skin temperature (Tsk) were recorded continuously throughout the simulation. Fluids were consumed ad libitum. Urine volume was measured throughout, and urine specific gravity (USG) analysed, to estimate hydration. All food and fluid consumption was recorded. There was no difference in work output between experimental conditions. However, significant variation in performance responses between individuals was observed. All measures of thermal stress were elevated in the HOT, with core and skin temperature reaching, on average, 0.24 ± 0.08°C and 2.81 ± 0.20°C higher than the CON group. Participants' doubled their fluid intake in the HOT condition, and this was reflected in the USG scores, where the HOT participants reported significantly lower values. Heart rate was comparable between conditions at nearly all time points, however the peak heart rate reached each circuit was 7 ± 3% higher in the CON trial. Likewise, RPE was slightly elevated in the CON trial for the majority of tasks. Participants' work output was comparable between the CON and HOT conditions, however the performance change over time varied significantly between individuals. It is likely that the increased fluid replacement in the heat, in concert with frequent rest breaks and task rotation, assisted with the regulation of physiological responses (e.g., heart rate, core temperature).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: We evaluated which aspects of neuromuscular performance are associated with bone mass, density, strength and geometry. METHODS: 417 women aged 60-94years were examined. Countermovement jump, sit-to-stand test, grip strength, forearm and calf muscle cross-sectional area, areal bone mineral content and density (aBMC and aBMD) at the hip and lumbar spine via dual X-ray absorptiometry, and measures of volumetric vBMC and vBMD, bone geometry and section modulus at 4% and 66% of radius length and 4%, 38% and 66% of tibia length via peripheral quantitative computed tomography were performed. The first principal component of the neuromuscular variables was calculated to generate a summary neuromuscular variable. Percentage of total variance in bone parameters explained by the neuromuscular parameters was calculated. Step-wise regression was also performed. RESULTS: At all pQCT bone sites (radius, ulna, tibia, fibula), a greater percentage of total variance in measures of bone mass, cortical geometry and/or bone strength was explained by peak neuromuscular performance than for vBMD. Sit-to-stand performance did not relate strongly to bone parameters. No obvious differential in the explanatory power of neuromuscular performance was seen for DXA aBMC versus aBMD. In step-wise regression, bone mass, cortical morphology, and/or strength remained significant in relation to the first principal component of the neuromuscular variables. In no case was vBMD positively related to neuromuscular performance in the final step-wise regression models. CONCLUSION: Peak neuromuscular performance has a stronger relationship with leg and forearm bone mass and cortical geometry as well as proximal forearm section modulus than with vBMD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: This study investigated the efficacy of an intermittent critical power model, termed the "work-balance" (W'BAL) model, during high-intensity exercise in hypoxia. METHODS: Eleven trained, male cyclists (mean ± SD; age 27 ± 6.6 yr, V[Combining Dot Above]O2peak 4.79 ± 0.56 L.min) completed a maximal ramp test and a 3 min "all-out" test to determine critical power (CP) and work performed above CP (W'). On another day an intermittent exercise test to task failure was performed. All procedures were performed in normoxia (NORM) and hypoxia (HYPO; FiO2 ≈ 0.155) in a single-blind, randomized and counter-balanced experimental design. The W'BAL model was used to calculate the minimum W' (W'BALmin) achieved during the intermittent test. W'BALmin in HYPO was also calculated using CP + W' derived in NORM (N+H). RESULTS: In HYPO there was an 18% decrease in V[Combining Dot Above]O2peak (4.79 ± 0.56 vs 3.93 ± 0.47 L.min ; P<0.001) and a 9% decrease in CP (347 ± 45 vs 316 ± 46 W; P<0.001). No significant change for W' occurred (13.4 ± 3.9 vs 13.7 ± 4.9 kJ; P=0.69; NORM vs HYPO). The change in V[Combining Dot Above]O2peak was significantly correlated with the change in CP (r = 0.72; P=0.01). There was no difference between NORM and HYPO for W'BALmin (1.1 ± 0.9 kJ vs 1.2 ± 0.6 kJ). The N+H analysis grossly overestimated W'BALmin (7.8 ± 3.4 kJ) compared with HYPO (P<0.001). CONCLUSION: The W'BAL model produced similar results in hypoxia and normoxia, but only when model parameters were determined under the same environmental conditions as the performance task. Application of the W'BAL model at altitude requires a modification of the model, or that CP and W' are measured at altitude.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most animals conduct daily activities exclusively either during the day or at night. Here, hormones such as melatonin and corticosterone, greatly influence the synchronization or regulation of physiological and behavioral cycles needed for daily activity. How then do species that exhibit more flexible daily activity patterns, responses to ecological, environmental or life-history processes, regulate daily hormone profiles important to daily performance? This study examined the consequences of (1) nocturnal activity on diel profiles of melatonin and corticosterone and (2) the effects of experimentally increased acute melatonin levels on physiological and metabolic performance in the cane toad (Rhinella marinus). Unlike inactive captive toads that had a distinct nocturnal melatonin profile, nocturnally active toads sampled under field and captive conditions, exhibited decreased nocturnal melatonin profiles with no evidence for any phase shift. Nocturnal corticosterone levels were significantly higher in field active toads than captive toads. In toads with experimentally increased melatonin levels, plasma lactate and glucose responses following recovery post exercise were significantly different from control toads. However, exogenously increased melatonin did not affect resting metabolism in toads. These results suggest that toads could adjust daily hormone profiles to match nocturnal activity requirements, thereby avoiding performance costs induced by high nocturnal melatonin levels. The ability of toads to exhibit plasticity in daily hormone cycles, could have broad implications for how they and other animals utilize behavioral flexibility to optimize daily activities in response to natural and increasingly human mediated environmental variation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research highlights the importance of redox signalling pathway activation by contraction-induced reactive oxygen species (ROS) and nitric oxide (NO) in normal exercise-related cellular and molecular adaptations in skeletal muscle. In this review, we discuss some potentially important redox signalling pathways in skeletal muscle that are involved in acute and chronic responses to contraction and exercise. Specifically, we discuss redox signalling implicated in skeletal muscle contraction force, mitochondrial biogenesis and antioxidant enzyme induction, glucose uptake and muscle hypertrophy. Furthermore, we review evidence investigating the impact of major exogenous antioxidants on these acute and chronic responses to exercise. Redox signalling pathways involved in adaptive responses in skeletal muscle to exercise are not clearly elucidated at present, and further research is required to better define important signalling pathways involved. Evidence of beneficial or detrimental effects of specific antioxidant compounds on exercise adaptations in muscle is similarly limited, particularly in human subjects. Future research is required to not only investigate effects of specific antioxidant compounds on skeletal muscle exercise adaptations, but also to better establish mechanisms of action of specific antioxidants in vivo. Although we feel it remains somewhat premature to make clear recommendations in relation to application of specific antioxidant compounds in different exercise settings, a bulk of evidence suggests that N-acetylcysteine (NAC) is ergogenic through its effects on maintenance of muscle force production during sustained fatiguing events. Nevertheless, a current lack of evidence from studies using performance tests representative of athletic competition and a potential for adverse effects with high doses (>70 mg/kg body mass) warrants caution in its use for performance enhancement. In addition, evidence implicates high dose vitamin C (1 g/day) and E (≥260 IU/day) supplementation in impairments to some skeletal muscle cellular adaptations to chronic exercise training. Thus, determining the utility of antioxidant supplementation in athletes likely requires a consideration of training and competition periodization cycles of athletes in addition to type, dose and duration of antioxidant supplementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To assess the impact of very hot (45°C) conditions on the performance of, and physiological responses to, a simulated firefighting manual-handling task compared to the same work in a temperate environment (18°C). METHODS: Ten male volunteer firefighters performed a 3-h protocol in both 18°C (CON) and 45°C (VH). Participants intermittently performed 12 × 1-min bouts of raking, 6 × 8-min bouts of low-intensity stepping, and 6 × 20-min rest periods. The area cleared during the raking task determined work performance. Core temperature, skin temperature, and heart rate were measured continuously. Participants also periodically rated their perceived exertion (RPE) and thermal sensation. Firefighters consumed water ad libitum. Urine specific gravity (USG) and changes in body mass determined hydration status. RESULTS: Firefighters raked 19% less debris during the VH condition. Core and skin temperature were 0.99 ± 0.20 and 5.45 ± 0.53°C higher, respectively, during the VH trial, and heart rate was 14-36 beats.min(-1) higher in the VH trial. Firefighters consumed 2950 ± 1034 mL of water in the VH condition, compared to 1290 ± 525 in the CON trial. Sweat losses were higher in the VH (1886 ± 474 mL) compared to the CON trial (462 ± 392 mL), though both groups were hydrated upon protocol completion (USG < 1.020). Participants' average RPE was higher in the VH (15.6 ± 0.9) compared to the CON trial (12.6 ± 0.9). Similarly, the firefighers' thermal sensation scores were significantly higher in the VH (6.4 ± 0.5) compared to the CON trial (4.4 ± 0.4). CONCLUSIONS: Despite the decreased work output and aggressive fluid replacement observed in the VH trial, firefighters' experienced increases in thermal stress, and exertion. Fire agencies should prioritize the health and safety of fire personnel in very hot temperatures, and consider the impact of reduced productivity on fire suppression efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 This research provides initial evidence that a novel measure of training load, the T2minute method, is accurate for quantifying training in high performance rowing. This work also explored athlete wellness and rowing performance, with findings suggesting that the wellness-performance relationship is complex and changes over time due to individual-specific factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skeletal muscles contain several subtypes of myofibers that differ in contractile and metabolic properties. Transcriptional control of fiber-type specification and adaptation has been intensively investigated over the past several decades. Recently, microRNA (miRNA)-mediated posttranscriptional gene regulation has attracted increasing attention. MiR-23a targets key molecules regulating contractile and metabolic properties of skeletal muscle, such as myosin heavy-chains and peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α). In the present study, we analyzed the skeletal muscle phenotype of miR-23a transgenic (miR-23a Tg) mice to explore whether forced expression of miR-23a affects markers of mitochondrial content, muscle fiber composition, and muscle adaptations induced by 4 weeks of voluntary wheel running. When compared with wild-type mice, protein markers of mitochondrial content, including PGC-1α, and cytochrome c oxidase complex IV (COX IV), were significantly decreased in the slow soleus muscle, but not the fast plantaris muscle of miR-23a Tg mice. There was a decrease in type IId/x fibers only in the soleus muscle of the Tg mice. Following 4 weeks of voluntary wheel running, there was no difference in the endurance exercise capacity as well as in several muscle adaptive responses including an increase in muscle mass, capillary density, or the protein content of myosin heavy-chain IIa, PGC-1α, COX IV, and cytochrome c. These results show that miR-23a targets PGC-1α and regulates basal metabolic properties of slow but not fast twitch muscles. Elevated levels of miR-23a did not impact on whole body endurance capacity or exercise-induced muscle adaptations in the fast plantaris muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Participation in regular physical activity is associated with better physical function in older people (>65 years); however, older people are the least active of all age groups. Exercise-based active video games (AVGs) offer an alternative to traditional exercise programs aimed at maintaining or enhancing physical performance measures in older people. This review systematically evaluated whether AVGs could improve measures of physical performance in older people. Secondary measures of safety, game appeal, and usability were also considered. METHODS: Electronic databases were searched for randomized controlled trials published up to April 2015. Included were trials with 2 or more arms that evaluated the effect of AVGs on outcome measures of physical performance in older people. RESULTS: Eighteen randomized controlled trials (n = 765) were included. Most trials limited inclusion to healthy community-dwelling older people. With the exception of 1 trial, all AVG programs were supervised. Using meta-analyses, AVGs were found to be more effective than conventional exercise (mean difference [MD], 4.33; 95% confidence intervals [CIs], 2.93-5.73) or no intervention (MD, 0.73; 95% CI, 0.17-1.29) for improving Berg Balance scores in community-dwelling older people. Active video games were also more effective than control for improving 30-second sit-to-stand scores (MD, 3.99; 95% CI, 1.92-6.05). No significant differences in Timed Up and Go scores were found when AVGs were compared with no intervention or with conventional exercise. CONCLUSIONS: Active video games can improve measures of mobility and balance in older people when used either on their own or as part of an exercise program. It is not yet clear whether AVGs are equally suitable for older people with significant cognitive impairments or balance or mobility limitations. Given the positive findings to date, consideration could be given to further development of age-appropriate AVGs for use by older people with balance or mobility limitations.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: After an intense bout of exercise, foam rolling is thought to alleviate muscle fatigue and soreness (ie, delayed-onset muscle soreness [DOMS]) and improve muscular performance. Potentially, foam rolling may be an effective therapeutic modality to reduce DOMS while enhancing the recovery of muscular performance. Objective: To examine the effects of foam rolling as a recovery tool after an intense exercise protocol through assessment of pressure-pain threshold, sprint time, change-of-direction speed, power, and dynamic strength-endurance. Design: Controlled laboratory study. Setting: University laboratory. Patients or Other Participants: A total of 8 healthy, physically active males (age = 22.1 ± 2.5 years, height = 177.0 ± 7.5 cm, mass = 88.4 ± 11.4 kg) participated. Intervention(s): Participants performed 2 conditions, separated by 4 weeks, involving 10 sets of 10 repetitions of back squats at 60% of their 1-repetition maximum, followed by either no foam rolling or 20 minutes of foam rolling immediately, 24, and 48 hours postexercise. Main Outcome Measure(s): Pressure-pain threshold, sprint speed (30-m sprint time), power (broad-jump distance), change-of-direction speed (T-test), and dynamic strength-endurance. Results: Foam rolling substantially improved quadriceps muscle tenderness by a moderate to large amount in the days after fatigue (Cohen d range, 0.59 to 0.84). Substantial effects ranged from small to large in sprint time (Cohen d range, 0.68 to 0.77), power (Cohen d range, 0.48 to 0.87), and dynamic strength-endurance (Cohen d = 0.54). Conclusions: Foam rolling effectively reduced DOMS and associated decrements in most dynamic performance measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current literature recommends dynamic rather than static stretching for the athletic warm-up. Dynamic stretching and various conditioning stimuli are used to induce potentiation in subsequent athletic performance. However, it is unknown as to which type of activity in conjunction with dynamic stretching within a warm-up provides the optimal potentiation of vertical jump performance. It was the objective of the study to examine the possible potentiating effect of various types of conditioning stimuli with dynamic stretching. Twenty athletes participated in 6 protocols. All the experimental protocols included 10 minutes of dynamic stretching. After the dynamic stretching, the subjects performed a (a) concentric (DS/CON): 3 sets of 3 repetition maximum deadlift exercise; (b) isometric (DS/ISOM): 3 sets of 3-second maximum voluntary contraction back squats; (c) plyometric (DS/PLYO): 3 sets of 3 tuck jumps; (d) eccentric (DS/ECC): 3 modified drop jumps; (e) dynamic stretching only (DS), and (f) control protocol (CON). Before the intervention and at recovery periods of 15 seconds, 4, 8, 12, 16, and 20 minutes, the participants performed 1-2 maximal countermovement jumps. The DS and DS/CON protocols generally had a 95-99% likelihood of exceeding the smallest worthwhile change for vertical jump height, peak power, velocity and force. However, the addition of the deadlift to the DS did not augment the potentiating effect. Time-to-peak potentiation was variable between individuals but was most consistent between 3 and 5 minutes. Thus, the volume and the intensity associated with 10 minutes of dynamic stretching were sufficient to provide the potentiation of vertical jump characteristics. Additional conditioning activities may promote fatigue processes, which do not permit further potentiation.