95 resultados para ALUMINIUM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure, fatigue crack growth behaviour and hardness of ultra fine grained 6061 aluminium alloy obtained by equal angle channel processing was studied. ECAP resulted in significant grain refinement down to the sub micron level and corresponding increase in hardness. Results point to a similar fatigue threshold stress intensity range and fatigue crack growth rates for 1, 2, 4 and 6 passes of ECAP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equal-channel angular pressing (ECAP) was used to fabricate Al/steel bimetallic rod for potential application in overhead transmission conductors. Bimetallic rods consisted of an austenitic stainless steel 316L core and an Al alloy 6201 cladding layer. By means of ECAP processing at 175°C, increase of mechanical strength without loss of electrical conductivity was achieved for one particular rod geometry out of three geometries tested. X-ray diffraction and transmission electron microscopy were employed to analyse how the microstructure was influenced by the number of processing passes and the bimetallic rod geometry. The co-deformation mechanism of the bimetallic rod under ECAP and accelerated dynamic ageing of Al alloy 6201 were discussed based on the microstructure characterisation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wire electrical discharge machining (EDM) of 6061 aluminium alloy in terms of material removal rate, kerf/slit width, surface finish and wear of electrode wire for different pulse on time and wire tension was studied. Eight experiments were carried out in a wire EDM machine by varying pulse on time and wire tension. It is found that the material removal rate increases with the increase of pulse on time though the wire tension does not affect the material removal rate. It seems that the higher wire tension facilitates steady machining process, which generates low wear in wire electrode and better surface finish. The surface roughness does not change notably with the variation of pulse on time. The appearance of the machined surfaces is very similar under all the machining conditions. The machined surface contains solidified molten material, splash of materials and blisters. The increase of the pulse on time increases the wear of wire electrode due to the increase of heat input. The wear of wire electrode generates tapered slot which has higher kerf width at top side than that at bottom side. The higher electrode wear introduces higher taper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The premature failure of an aluminium injection die with a duplex surface treatment (plasma nitriding and physical vapor deposition coating) was investigated, in an effort to identify the causes of such premature failure of the component. The manufacturing and the operating conditions were documented. Analytical tools were used, including scanning electron microscopy with energy dispersive X-ray capability, X-ray diffraction, and instrumented microhardness testing. Preliminary observations showed a microstructure of coarse tempered martensite, and a considerably rough surface with porosity and cracks. A detailed analysis of crack initiation sites identified sulfur inclusions in the subsurface, underneath the coating. A further revision of the processing conditions revealed that a sulfur-impregnated grinding stone had been used to polish the die. The chemical composition of such grinding stone matched that of the inclusions found in the subsurface of the failed component. Thus, searched causes of premature failure could be discussed on the lights of the present findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is dedicated to numerical prediction of the bending of thin aluminium alloy sheets, with a focus on the material parameter identification and the prediction of rupture with or without pre-strains in tension prior to bending. The experimental database consists of i) mechanical tests at room temperature, such as tension and simple shear, performed at several orientations to the rolling direction and biaxial tension ii) air bending tests of rectangular samples after (or not) pre-straining in tension. The mechanical model is composed of the Yld2004-18p anisotropic yield criterion (Barlat et al. [3]) associated with a mixed hardening rule. The material parameters (altogether 21) are optimized with an inverse approach, in order to minimize the gap between experimental data and model predictions. Then, the Hosford-Coulomb rupture criterion is used in an uncoupled way, and the parameters are determined from tensile tests, both uniaxial and biaxial, with data up to rupture. In a second step, numerical simulations of the bending tests are performed, either on material in its original state or after pre-straining in tension, with pre-strain magnitudes increasing from 0.19 up to 0.3. The comparisons are performed on different outputs: load evolution, strain field and prediction of the rupture. A very good correlation is obtained over all the tests, in the identification step as well as in the validation one. Moreover, the fracture criterion proves to be successful whatever the amount of pre-strain may be. A convincing representation of the mechanical behavior at room temperature for an aluminium alloy is thus obtained.