105 resultados para solid state sodium ion electrolytes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sodium-based batteries are being considered to replace Li-based batteries for the fabrication of large-scale energy storage devices. One of the main obstacles is the lack of safe and conductive solid Na-ion electrolytes. A Na-ion polymer based on the (4-styrenesulfonyl(trifluromethylsulfonyl) imide anion, Na[STFSI], has been prepared by a radical polymerization process and its conductive properties determined. In addition, a number of multi-component polymers were synthetized by co-reaction of two monomers: Na[STFSI] and ethyl acrylate (EA) at different ratios. The structural and phase characterizations of the polymers were probed by various techniques (DSC, TGA, NMR, GPC, Raman, FTIR and Impedance spectroscopy). Comparative studies with blends of the homopolymers Na[PSTFSI] and poly(ethylacrylate) (PEA) have also been performed. The polymers are all thermally stable up to 300°C and the ionic conductivity of EA copolymers and EA blends are about 1-3 orders of magnitude higher than that of Na[PSTFSI]. The highest conductivity measured at 100°C was found for Na[PSTFSI-blend-5EA] at 7.9 × 10-9 S cm-1, despite being well below its Tg. Vibrational spectroscopy indicates interaction between Na+ and the EA carbonyl groups, with a concomitant decrease in the sulfonyl interaction, facilitating Na+ motion, as well as lowering Tg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrospun fibers are widely used in composite material design and fabrication due to their high aspect ratio, high surface area and favorable mechanical properties. In this report, novel organic ionic plastic crystal (OIPC) modified poly(vinylidene difluoride) (PVDF) composite fiber membranes were prepared by electrospinning. These composite materials are of interest for application as solid electrolytes in devices including lithium and sodium batteries. The influence of the OIPC, N-ethyl-N-methylpyrrolidinium tetrafluoroborate [C2mpyr][BF4], on the morphology and phase behavior of the composite fibers was investigated by scanning electron microscopy and Fourier transform infrared spectroscopy. Compared with pure electrospun PVDF fibers, which have an electroactive β phase and a small amount of non-polar α phase, the ion-dipole interaction between OIPC and the polymer in the co-electrospun composite system can reduce the non-polar α phase PVDF, resulting in almost entirely electroactive β phase PVDF. Differential scanning calorimetry shows that the ion-dipole interaction between the OIPC and PVDF can also interrupt the crystalline structure of the OIPC. Solid state NMR analysis also reveals different molecular dynamics of the [C2mpyr][BF4] in co-electrospun fibers compared with pure OIPC. Thus, electrospun [C2mpyr][BF4]/PVDF composite fibers that combine both increased ionic conductivity and almost pure β phase PVDF are demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the thermal, structural and conductivity properties of the organic ionic plastic crystal (OIPC) N-methyl-N-methyl-pyrrolidinium dicyanamide [C1mpyr][N(CN)2] mixed with the sodium salt Na[N(CN)2]. The DSC thermal traces indicate that an isothermal transition, which may be a eutectic melting, occurs at ~ 89 °C, below which all compositions are entirely in the solid phase. At 20 mol% Na[N(CN)2], this transition is the final melt for this mixture, and a new liquidus peak grows beyond 20 mol% Na[N(CN)2]. The III- > II solid-solid phase transition continues to be evident at ~- 2 °C. The microstructure for all the mixtures indicated a phase separated morphology where precipitates can be clearly observed. Most likely, these precipitates consist of a Na-rich second phase. This was also suggested from the vibrational spectroscopy and the 23Na NMR spectra. The lower concentrations of Na[N(CN)2] present complex 23Na MAS spectra, suggesting more than one sodium ion environment is present in these mixtures consistent with complex phase behavior. Unlike other OIPCs where the ionic conductivity usually increases upon doping or mixing in a second component, the conductivity of these mixtures remains relatively constant and above 10- 4 S cm- 1 at ∼ 80 °C, even in the solid state. Such high conductivities suggest these materials may be promising to be used for all solid-state electrochemical devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ambient temperature sodium batteries hold the promise of a new generation of high energy density, low-cost energy storage technologies. Particularly challenging in sodium electrochemistry is achieving high stability at high charge/discharge rates. We report here mixtures of inorganic/organic cation fluorosulfonamide (FSI) ionic liquids that exhibit unexpectedly high Na+ transference numbers due to a structural diffusion mechanism not previously observed in this type of electrolyte. The electrolyte can therefore support high current density cycling of sodium. We investigate the effect of NaFSI salt concentration in methylpropylpyrrolidinium (C3mpyr) FSI ionic liquid (IL) on the reversible plating and dissolution of sodium metal, both on a copper electrode and in a symmetric Na/Na metal cell. NaFSI is highly soluble in the IL allowing the preparation of mixtures that contain very high Na contents, greater than 3.2 mol/kg (50 mol %) at room temperature. Despite the fact that overall ion diffusivity decreases substantially with increasing alkali salt concentration, we have found that these high Na+ content electrolytes can support higher current densities (1 mA/cm2) and greater stability upon continued cycling. EIS measurements indicate that the interfacial impedance is decreased in the high concentration systems, which provides for a particularly low-resistance solid-electrolyte interphase (SEI), resulting in faster charge transfer at the interface. Na+ transference numbers determined by the Bruce-Vincent method increased substantially with increasing NaFSI content, approaching >0.3 at the saturation concentration limit which may explain the improved performance. NMR spectroscopy, PFG diffusion measurements, and molecular dynamics simulations reveal a changeover to a facile structural diffusion mechanism for sodium ion transport at high concentrations in these electrolytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

27Al, 31P and 7Li NMR measurements have been performed on lithium conducting ceramics based on the LiTi2(PO4)3 structure with Al, V and Nb metal ions substituted for either Ti or P within the framework NASICON structure. The 27Al magic angle spinning NMR measurements have revealed that, although Al is intended to substitute for octahedral Ti sites, additional substitution into tetrahedral environments (presumably phosphorous sites) occurs with increasing amount of Al addition. This tetrahedral substitution appears to occur more readily in the presence of vanadium, in Li1+xAlxTi2−x(PO4)2.9(VO4)0.1, whereas similar niobium additions (in place of vanadium) appear to stifle tetrahedral substitution. 7Li static NMR spectra reveal quadrupolar structure with Cq approximately 42 kHz, largely independent of substitution. Measurement of the 7Li central transition linewidth at room temperature reveals a relatively mobile lithium species (300–900 Hz) with linewidth tending to decrease with Al substitution and increase with increasing V or Nb. This new structural information is discussed in the context of ionic conduction in these ceramics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doping of lithium salts and acids into the plastic crystal phase of succinonitrile has shown for the first time of the possibility of creating solid state electrolytes based on plastic crystalline solvents where the matrix itself is neutral and hence not intrinsically conductive. These materials illustrate the concept of a solid state electrolyte solvent. Room temperature conductivities up to 3.4×10−4 S cm−1 were obtained with 5 wt.% lithium bis(trifluoromethanesulfonylamide) in succinonitrile. Pulsed field gradient NMR measurements indicate that both cation and anion are mobile in this lattice. Proton conductivity was also observed when methane sulfonic acid or glacial acetic acid was used as dopants, however, the conductivity in these systems is limited by the poor dissociating ability of these acids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work lithium modified silica (Li-SiO2) nano-particles were synthesized and used as a single ion lithium conductor source in gel electrolytes. It was found that Li-SiO2 exhibited good compatibility with DMSO, DMA/EC (a mixture of N,N-dimethyl acetamide and ethylene carbonate) and the ionic liquid, N-methyl-N-propyl pyrrolidinium bis(trifluoromethylsulfonyl) amide ([C3mpyr][NTf2]). Several gel electrolytes based on Li-SiO2 were obtained. These gel electrolytes were investigated by DSC, solid state NMR, conductivity measurements and cyclic voltammetry. Conductivities as high as 10−3 S/cm at room temperature were observed in these nano-particle gel electrolytes. The results of electrochemical tests showed that some of these materials were promising for using as lithium conductive electrolytes in electrochemical devices, with high lithium cycling efficiency evident.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, novel alkaline solid polymer electrolytes (SPEs) with tetramethyl ammonium hydroxide (Me4NOH·xH2O) have been developed, without addition of any volatile solvent. It was found that some polymers such as poly(sodium acrylate) had good compatibility with Me4NOH·xH2O. The polymer-Me4NOH·xH2O electrolytes thus prepared in this work appeared to have improved mechanical properties as compared with the pure hydroxide and remained highly conductive in the solid state (102 S cm−1 at ~40 °C). The thermal properties of the alkaline SPEs and the dependence of conductivity on composition and temperature are presented, and the relationships between properties and composition as well as conductivity mechanism for these new systems are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the ion transport behavior of organic ionic plastic crystals (OIPCs) is crucial for their potential application as solid electrolytes in various electrochemical devices such as lithium batteries. In the present work, the ion transport mechanism is elucidated by analyzing experimental data (single-crystal XRD, multinuclear solid-state NMR, DSC, ionic conductivity, and SEM) as well as the theoretical simulations (second moment-based solid static NMR line width simulations) for the OIPC diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate ([P1,2,2,4][PF6]). This material displays rich phase behavior and advantageous ionic conductivities, with three solidsolid phase transitions and a highly “plastic” and conductive final solid phase in which the conductivity reaches 10–3 S cm–1. The crystal structure shows unique channel-like packing of the cations, which may allow the anions to diffuse more easily than the cations at lower temperatures. The strongly phase-dependent static NMR line widths of the 1H, 19F, and 31P nuclei in this material have been well simulated by different levels of molecular motions in different phases. Thus, drawing together of the analytical and computational techniques has allowed the construction of a transport mechanism for [P1,2,2,4][PF6]. It is also anticipated that utilization of these techniques will allow a more detailed understanding of the transport mechanisms of other plastic crystal electrolyte materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the focus on developing new polymer electrolytes continues to intensify in the area of alternative energy conversion and storage devices, the rational design of polyelectrolytes with high single ion transport rates has emerged as a primary strategy for enhancing device performance. Previously, we reported a series of sulfonate based copolymer ionomers based on using mixed bulky quaternary ammonium cations and sodium cations as the ionomer counterions. This led to improvements in the ionic conductivity and an apparent decoupling from the Tg of the ionomer. In this article, we have prepared a new series of ionomers based on the homopolymer of poly(2-acrylamido-2-methyl-1-propane-sulfonic acid) using differing sizes of the ammonium counter-cations. We observe a decreasing Tg with increasing the bulkiness of the quaternary ammonium cation, and an increasing degree of decoupling from Tg within these systems. Somewhat surprisingly, phase separation is observed in this homopolymer system, as evidenced from multiple impedance arcs, Raman mapping and SEM. The thermal properties, morphology and the effect of plasticizer on the transport properties in these ionomers are also presented. The addition of 10 wt% plasticizer increased the ionic conductivity between two and three orders of magnitudes leading to materials that may have applications in sodium based devices. This journal is

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Full conformational and energy explorations are conducted on an organic ionic plastic crystal, 1-ethyl-1-methylpyrrolidium tetrafluoroborate [C2 mpyr][BF4 ]. The onsets of various stages of dynamic behaviour, which appear to account for low-temperature solid-solid phase transitions, are investigated by using quantum-chemical simulations. It is suggested that pseudorotation of the pyrrolidine ring occurs in the first instance; the partial rotation of the entire cation subsequently occurs and may be accompanied by reorientation of the ethyl chain as the temperature increases further. A cation-anion configuration, whereby BF4 (-) interacts with the C2 mpy cation from the side of the ring, is the most likely structure in the low-temperature phase IV region. These interpretations are supported by (13) C nuclear magnetic resonance chemical-shift analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report spectroscopic results from investigations of a novel solid polymeric fast-ion-conductor based on poly(acrylonitrile), (PAN, of repeat unit [CH2CH(CN)]n), and the salt LiCF3SO3 . From NMR studies of the temperature and concentration dependencies of 7Li- and lH-NMR linewidths, we conclude that significant ionic motion occurs at temperatures close to the glass transition temperature of these polymer-in-salt electrolytes, in accordance with a recent report on the ionic conductivity. In the dilute salt-in-polymer regime, however, ionic motion appears mainly to be confined to local salt-rich domains, as determined from the dramatic composition dependence of the ionic conductivity. FT-Raman spectroscopy is used to directly probe the local chemical anionic environment, as well as the Li+–PAN interaction. The characteristic δs(CF3) mode of the CF3SO3 anion at ~750–780 cm−l shows that the ionic substructure is highly complex. Notably, no spectroscopic evidence of free anions is found even at relatively salt-depleted compositions (e.g. N:Li~60–10:1). A strong Li+–PAN interaction is manifested as a pronounced shift of the characteristic polymer C=N stretching mode, found at ~2244 cm−l in pure PAN, to ~2275 cm−l for Li+-coordinated C=N moieties. Our proton-NMR data suggest that upon complexation of PAN with LiCF3 SO3, the glass transition occurs at progressively lower temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incorporation of dopant levels of lithium ions (0.5 to 9.3% by mole) in the N-methyl-N-ethylpyrrolidinium bis(trifluoromethanesulfonyl)amide (P12TFSA) plastic crystalline phase results in increases in the solid state ionic conductivity of more than 3 orders of magnitude at 298 K. Conductivities as high as 10−-4 S cm−1 at 323 K have been measured in these doped plastic crystal phases. These materials can therefore be classified as fast-ion conductors. Higher levels of Li only marginally increase the conductivity, up to around 33 mol%, followed by a slight decrease to 50 mol%. Thermal analysis behaviour has allowed the partial development of the binary phase diagram for the LiTFSA–P12TFSA system between 0–50 mol% LiTFSA, which suggests the presence of a solid solution single phase at concentrations less than 9.3 mol% LiTFSA. There is also strong evidence of eutectic behaviour in this system with a eutectic transition temperature around 308 K at 33 mol% LiTFSA. A model relating ionic conduction to phase behaviour in this system is presented. The increased conductivity upon doping has been associated with lithium ion motion via7Li solid state NMR linewidth measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High conductivity in solid-state electrolytes is a critical requirement for many advanced energy and other electrochemical applications. Plastic crystalline materials have shown promise in this regard, and the inclusion of nanosized inorganic particles in both amorphous and crystalline materials has indicated order of magnitude enhancements in ion transport induced by space charge or other defect enhancement. In this paper we present conductivity enhancements in the plastic crystal N,N‘-ethylmethylpyrrolidinium bis(trifluoromethanesulfonyl)amide ([C2mpyr][NTf2]) induced by nanosized SiO2 particles. The addition of the nanoparticles dramatically increases plasticity and ion mobility. Positron annihilation lifetime spectroscopy (PALS) measurements indicate an increase in mean defect size and defect concentration as a result of nanoparticle inclusion. The scaling of the conductivity with size suggests that a “trivial space charge” effect is operable, although a strain induced enhancement of defects (in particular extended defects) is also likely given the observed increase in plasticity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doping lithium bis(trifluoromethanesulfonyl)amide (Li[NTf2]) into the N-ethyl,N′-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ([C2mpyr][NTf2]) plastic crystal material has previously indicated order of magnitude enhancements in ion transport and conductivity over pure [C2mpyr][NTf2]. Recently, conductivity enhancements in this ionic plastic crystal induced by SiO2 nanoparticles have also been reported. In this work the inclusion of SiO2 nanoparticles in Li ion doped [C2mpyr][NTf2] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, positron annihilation lifetime spectroscopy (PALS), Raman spectroscopy, NMR spectroscopy and scanning electron microscopy (SEM). Solid state 1H NMR indicates that the addition of the nanoparticles increases the mobility of the [C2mpyr] cation and positron lifetime spectroscopy (PALS) measurements indicate an increase in mean defect size and defect concentration as a result of nanoparticle inclusion, especially with 10 wt% SiO2. Thus, the substantial drop in ion conductivity observed for this doped nanocomposite material was surprising. This decrease is most likely due to the decrease in mobility of the [NTf2] anion, possibly by its adsorption at the SiO2/grain boundary interface and concomitant decrease in mobility of the Li ion.