107 resultados para silk powder


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silk fibroin (SF) from Bombyx mori has many established excellent properties and has found various applications in the biomedical field. However, some abilities or capacities of SF still need improving to meet the need for using practically. Indeed, diverse SF-based composite biomaterials have been developed. Here we report the feasibility of fabricating pantothenic acid (vitamin B5, VB5)-reinforcing SF nanofibrous matrices for biomedical applications through green electrospinning. Results demonstrated the successful loading of D-pantothenic acid hemicalcium salt (VB5-hs) into resulting composite nanofibers. The introduction of VB5-hs did not alter the smooth ribbon-like morphology and the silk I structure of SF, but significantly decreased the mean width of SF fibers. SF conformation transformed into β-sheet from random coil when composite nanofibrous matrices were exposed to 75% (v/v) ethanol vapor. Furthermore, nanofibers still remained good morphology after being soaked in water environment for five days. Interestingly, as-prepared composite nanofibrous matrices supported a higher level of cell viability, especially in a long culture period and significantly assisted skin cells to survive under oxidative stress compared with pure SF nanofibrous matrices. These findings provide a basis for further extending the application of SF in the biomedical field, especially in the personal skin-care field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, shell powder was modified by sodium stearate surface modifier for improving the compatibility of SP with polymer materials. The surface modifiers influence on the physical and chemical properties of SP were studied by scanning electron microscope(SEM), fourier infrared spectrum(FT-IR), surface contact angle meter, XRD diffraction analysis meter and other modern instruments and analysis method. The results showed that the surface modifier was successfully coupled to the shell powder surface. After surface modifier modification, the interfacial compatibility of the shell powder with polymer materials was effectively improved. The contact angle of shell powder surface increased from 73.5 ° to 110.8 °, along with the dosage of sodium stearate surface modifier was 4.0%. All results suggested that modified shell powder is promising for using as a reinforcement filler in polymer materials. © (2014) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein fibre wastes from animal hairs, feathers and insect secreted filaments can be aptly utilized by converting them into ultra-fine particles. Particles from animal protein fibres present large surface-to-weight ratio and significantly enhanced surface reactivity, that have opened up novel applications in both textile and non-textile fields. This review article summarizes the state-of-the-art routes to fabricate ultrafine particles from animal protein fibres, including direct route of mechanical milling of fibres and indirect route from fibre proteins. Ongoing research trends in novel applications of protein fibre particles in various fields, such as biomedical science, environmental protection and composite structures are presented. © 2014 The Korean Fiber Society and Springer Science+Business Media Dordrecht.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple in-situ synthesis route for gold nanoparticles (NPs) was developed to realize multifunctions for silk fabrics. The gold NPs were prepared in a heated solution containing white silk fabric samples. The silk fabrics were colored red and brown by the gold NPs because of their localized surface plasmon resonance (LSPR) property. Gold nanospheres on silk were obtained at a low gold content, and gold nanoplates were synthesized as the gold content increased. The silk fabrics treated with gold NPs showed good light fastness. Moreover, the gold NPs endowed silk fabrics with strong antibacterial activity, excellent UV protection property and enhanced thermal conductivity. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large, chronic perforations of the tympanic membrane or eardrum can cause hearing loss as well as a range of secondary health problems. Current methods of repair usually involve grafting a material such as cartilage from another site on the body across the perforation. However, given problems such as possible infections at the graft donor site and the inability to see through the graft to assess infection within the middle ear, there is a need to develop an alternative material that is strong, readily available and transparent. Such a material would allow for less invasive surgery and potentially result in a superior hearing outcome for the patient. Our recent work has identified silk fibroin films as a promising material for this application. This paper reviews the repair of large perforations and compares the mechanical properties of silk with some existing graft materials. It also briefly discusses the difficulties in defining and comparing these properties with such different materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 ilk fibres from silkworm cocoons have lower strength than spider silk and have received less attention as a source of high-performance fibres. In this work, we have used an innovative procedure to eliminate the flaws gradually of a single fibre specimen by retesting the unbroken portion of the fibre, after each fracture test. This was done multiple times so that the final test may provide the intrinsic fibre strength. During each retest, the fibre specimen began to yield once the failure load of the preceding test was exceeded. For each fibre specimen, a composite curve was constructed from multiple tests. The composite curves and analysis show that strengths of mass-produced Muga and Eri cocoon silk fibres increased from 446 to 618 MPa and from 337 to 452 MPa, respectively. Similarly, their toughness increased from 84 to 136 MJ m(-3) and from 61 to 104 MJ m(-3), respectively. Composite plots produced significantly less inter-specimen variations compared to values from single tests. The fibres with reduced flaws as a result of retests in the tested section have a tensile strength and toughness comparable to naturally spun dragline spider silk with a reported strength of 574 MPa and toughness of 91-158 MJ m(-3), which is used as a benchmark for developing high-performance fibres. This retesting approach is likely to provide useful insights into discrete flaw distributions and intrinsic mechanical properties of other fatigue-resistant materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The degumming process to remove sericin decreases silk fiber strength; however, the impact of degumming on the mechanical properties of regenerated silk biomaterials has not been established. This study investigated the effect of degumming temperature, time, alkaline component and alkaline concentration on the mechanical properties of silk fibroin films. Sericin removal was estimated using weight loss; 10 samples with 12.2–29.4% weight loss were then further characterized in terms of fiber mechanical properties, fiber surface morphology, molecular weight distribution and film tensile strength. A negative correlation was found between weight loss and fiber tensile strength. This loss of fiber strength under harsher degumming conditions had a direct impact on the tensile strength of regenerated films. Mild degumming conditions (weight loss of 12.2%) led to higher film strength (8.9 MPa), whereas aggressive degumming conditions (with 29.4% weight loss) resulted in significantly weaker films (4.3 MPa). The presence of some residual sericin, after mild degumming, is likely to affect the mechanical properties of the regenerated silk films. These results will assist in the development of materials with mechanical and biocompatibility properties tuned to specific biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the silk cocoon structure and its protective roles. It focussed mainly on three protection roles, viz mechanical protection (indentation), bacterial and UV protection. Silk cocoon absorbed UV-A and UV-B radiations and had the potential to be used as a photoprotective agent in sunscreens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silk fibroin has been widely employed in various forms as biomaterials for biomedical applications due to its superb biocompatibility and tunable degradation and mechanical properties. Herein, silk fibroin microparticles of non-mulberry silkworm species (Antheraea assamensis, Antheraea mylitta and Philosamia ricini) were fabricated via a top-down approach using a combination of wet-milling and spray drying techniques. Microparticles of mulberry silkworm (Bombyx mori) were also utilized for comparative studies. The fabricated microparticles were physico-chemically characterized for size, stability, morphology, chemical composition and thermal properties. The silk fibroin microparticles of all species were porous (∼5μm in size) and showed nearly spherical morphology with rough surface as revealed from dynamic light scattering and microscopic studies. Non-mulberry silk microparticles maintained the typical silk-II structure with β-sheet secondary conformation with higher thermal stability. Additionally, non-mulberry silk fibroin microparticles supported enhanced cell adhesion, spreading and viability of mouse fibroblasts than mulberry silk fibroin microparticles (p<0.001) as evidenced from fluorescence microscopy and cytotoxicity studies. Furthermore, in vitro drug release from the microparticles showed a significantly sustained release over 3 weeks. Taken together, this study demonstrates promising attributes of non-mulberry silk fibroin microparticles as a potential drug delivery vehicle/micro carrier for diverse biomedical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Knowledge of the degree of hydration of cement pastes is critical for determining properties such as the durability of concrete. As part of an integrated study on the prediction of chloride ingress in reinforced concrete, synchrotron Xray powder diffraction was used to estimate the degree of hydration of cement pastes. While for the past 20 years the composition of Portland cement has been determined by Rietveld analysis of X-ray diffraction, nevertheless there are a number of factors, including the amorphous content of the cement and relative proportion of mineral polymorphs present in the initial clinker, whose impact on the analysis are still not completely understood. Analysis of the resulting diffraction patterns indicated enhanced identification of polymorphs of alite, belite, ferrite and aluminate, which are present in the initial unhydrated cement and clinker, as well as improved quantification of hydrated crystalline phases such as calcium hydroxide and ettringite, which are key phases determining the speed of the chemical reactions in cement. In this paper we describe the experience that we have gained in the determination of the degree of hydration of cement pastes. We detail the standards and precautions that we took to characterize production cements and their hydration products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regenerated Bombyx mori (B. mori) silk fibroin is a type of widely used biomaterial. The β-sheet structure of it after methanol treatment provides water-insolubility and mechanical stability while on the other side leads to a hydrophobic surface which is less preferred by biological systems. In this work we prepare a novel type of nanoconfined silk fibroin film with a thickness below 100 nm. The film has a flat while hydrophobic surface because of its β-sheet structure due to the z-direction confinement during formation. Different types of lipid monolayers, DOPC, DPPC and MO, are assembled on the silk film surface. The lipid coating, especially the DPPC membrane, provides a much smoother and more hydrophilic surface due to the gel phase tails of the lipids, in comparison with the DOPC and MO ones which are in a liquid phase and have a much stronger interfacial association between silk film surface and lipid tails. Such a lipid coating preserves the biocompatibility and cellular affinity of the silk film which promises potential applications as surface coatings for materials for biological use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of milling time on the powder packing characteristics and compressive mechanical properties of a biomedical Ti-10Nb-3Mo alloy (wt.%) was investigated. Ball milling was performed on elemental metal powders at different milling times of 0 (blended), 2, 4, 6, 8, and 10 h. This article demonstrates that despite the beneficial effects of ball milling technique in the mechanical alloying of the Ti-based alloy, the ball-milled powders synthesized at longer milling times can adversely affect the packing density and significantly diminish the compressive mechanical properties of the sintered powders. Crown