106 resultados para polypyrrole dispersions


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Applications of polymers like polypyrrole and polythiophene often require interaction with an electrolyte consisting of solvent and dissolved salt. Ionic Liquids (ILs) are pure saits, fluid at room temperature, that form charged electrolytes. Pure l-Bu-3-Me-Imidazolium PF6 (BMI PF6) a hydrophobic IL that has a wide potential window, was used to investigate the electrochemistry ofpolypyrrole. Enhanced electrochemic~l stability of polypyrrole was obtained on repetitive redox cycling with respect to the equivalent propylene carbonate electrolyte with tetrabutylammonium hexaflurophosphate (TBA PF6) electrolyte.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dielectric properties of conducting polymer composites containing polypyrrole (PPy) crushed films, PPy powder, polyaniline (PAn) base and acid powders as the dispersants and silicone rubber and vinyl ester as matrix materials have been investigated in the frequency range 2-18 GHz. The dielectric parameters such as the real part, epsiprime, and imaginary part, epsiPrime, of the permittivity and loss tangent, tandelta, increase with increasing conductivity and concentration of the dispersant. The geometrical shape of the dispersant governs the ability of conductive network formation which is indicated by a large drop in the resistivity of the composite. Also, dispersant/matrix interactions and physical properties of the matrix influence the agglomeration of the dispersant phase which, in turn, affects the dielectric properties of the composites. Flakes of PPy obtained by crushing highly conductive films and large PAn powder aggregates were unable to form a conducting network. The composites without a network of dispersant exhibit low dielectric parameters. On the other hand, high values of tan delta ranging from 0.7–1.1 were achieved for the PPy powder (15 parts)/silicone rubber composites where a conducting network was observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conducting polymers prepared by a templated vapour phase polymerisation process involving solid phase transition metal complexes are found to produce polymers with charge carriers that exhibit maximum drift velocity in the range of 1 m/s. This super-mobility seems to be related to a high degree of ordering in the materials as evidenced by the X-ray diffraction data. This may result from a templated polymerisation process. The high mobility manifests itself as a capacity to sustain very high current densities (>10000 A/cm2); such high current densities are of importance in thin film conductor applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although conducting polymers have various potential applications, lack of solubility is an impediment in their direct application to material surfaces. Synthesis of alkyl pyrrole monomers and subsequent polymerization into soluble conducting polymers are aimed as alternatives to conventional methods of application of conducting polymers on substrates. Alkyl chains are attached to a pyrrole ring to produce solubility in the resulting conducting polypyrroles, which allow direct application of conductive polymer emulsions to any desired surface. Friedel-Crafts acylation of the tosyl-protected pyrrole provides high yields of the 3-acylated product. The conductivity values of poly-3- and 3, 4-substituted pyrroles are generally less than the unmodified polypyrrole. Increasingly bulkier groups attached to the pyrrole means lower conductivity of the resultant polymer. As the carbon chain length attached to the 3-position of pyrrole increases, the solubility also increases. However, the magnitude of change in conductivity of films and pellets of soluble conducting polypyrroles over the alkyl range is not significant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soluble conducting alkyl polypyrrole polymers have been applied by either chemical polymerization of the 3-alkyl monomers or direct application of polymer emulsion to the surface. Solution, vapor and spray polymerization methods of coating poly(3-alkylpyrroles) to the surface of woven wool fabrics are explored. Conductive textile samples have also been prepared by applying emulsions of soluble prepolymerized 3-alkylpyrrole to the fabric surface. Direct applications of a conductive paint to the textile surface eliminate the exposure of the substrate to damaging oxidizing agents which allow the coating of more sensitive and delicate substrates. All textiles produced are tested for abrasion resistance and conductivity. For alkyl polypyrrole coated fabrics, the optimum carbon chain lengths are between n=10 and n=14, which result in optimum values of conductivity and solubility. The darkness of the tone is inversely related to the surface resistivity of the resulting conductive fabric. Therefore, deep black coatings have low resistivity whereas light gray coatings on a white fabric surface have higher surface resistivity. Longer alkyl chains result in higher surface resistivity in fabrics. The conductive coating of poly(3-decanylpyrrole) on the textile surface has a better abrasion resistance compared to that of an unsubstituted polypyrrole coating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

3-alkylpyrrole to the fabric surface. Direct applications of a conductive paint to the textile surface eliminate the exposure of the substrate to damaging oxidizing agents which allow the coating of more sensitive and delicate substrates. All textiles produced are tested for abrasion resistance and conductivity. For alkyl polypyrrole coated fabrics, the optimum carbon chain lengths are between n=10 and n=14, which result in optimum values of conductivity and solubility. The darkness of the tone is inversely related to the surface resistivity of the resulting conductive fabric. Therefore, deep black coatings have low resistivity whereas light gray coatings on a white fabric surface have higher surface resistivity. Longer alkyl chains result in higher surface resistivity in fabrics. The conductive coating of poly(3-decanylpyrrole) on the textile surface has a better abrasion resistance compared to that of an unsubstituted polypyrrole coating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patternable, electrically conductive coatings having a superhydrophobic and superoleophobic surface have been prepared by one-step vapour-phase polymerisation of polypyrrole in the presence of a fluorinated alkyl silane directly on fibrous substrates. The coated fabrics showed a surface resistance of 0.5-0.8 kΩ □-1 with water and hexadecane contact angles of 165° and 154°, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a new method for obtaining poly(3,4-ethylenedioxythiophene) (PEDOT/PSS)/gold nanocomposites is described. In a first step, PEDOT/PSS gold nanoparticle aqueous dispersions were obtained by simultaneous chemical synthesis of PEDOT and gold nanoparticles in the presence of PSS that acts as a stabilizer. In a second step, these PEDOT/PSS gold nanoparticle dispersions were used to formulate nanocomposites by mixing the initial dispersion with commercially available PEDOT/PSS aqueous dispersion. Nanocomposite thin films, obtained by casting these dispersions, present an intimate contact between the inorganic and organic components

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, nanostructured conductive platforms synthesized from aligned multiwalled carbon nanotubes and polypyrrole are investigated as myo-regenerative scaffolds. Myotube formation follows a linear path on the platforms coinciding with extent of nanotopography. In addition, electrical stimulation enhances myo-nuclear number and differentiation. These studies demonstrate that conductive polymer platforms can be used to influence muscle cell behaviour through nanostructure and electrical stimulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A biosynthetic platform composed of a conducting polypyrrole sheet embedded with unidirectional biodegradable polymer fibers is described (see image; scale bar = 50 µm). Such hybrid systems can promote rapid directional nerve growth for neuro-regenerative scaffolds and act as interfaces between the electronic circuitry of medical bionic devices and the nervous system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel biosynthetic platforms supporting ex vivo growth of partially differentiated muscle cells in an aligned linear orientation that is consistent with the structural requirements of muscle tissue are described. These platforms consist of biodegradable polymer fibers spatially aligned on a conducting polymer substrate. Long multinucleated myotubes are formed from differentiation of adherent myoblasts, which align longitudinally to the fiber axis to form linear cell-seeded biosynthetic fiber constructs. The biodegradable polymer fibers bearing undifferentiated myoblasts can be detached from the substrate following culture. The ability to remove the muscle cell-seeded polymer fibers when required provides the means to use the biodegradable fibers as linear muscle-seeded scaffold components suitable for in vivo implantation into muscle. These fibers are shown to promote differentiation of muscle cells in a highly organized linear unbranched format in vitro and thereby potentially facilitate more stable integration into recipient tissue, providing structural support and mechanical protection for the donor cells. In addition, the conducting substrate on which the fibers are placed provides the potential to develop electrical stimulation paradigms for optimizing the ex vivo growth and synchronization of muscle cells on the biodegradable fibers prior to implantation into diseased or damaged muscle tissue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel solution spinning method to produce highly conducting carbon nanotube (CNT) biofibers is reported. In this process, carbon nanotubes are dispersed using biomolecules such as hyaluronic acid, chitosan, and DNA, and these dispersions are used as spinning solutions. Unlike previous reports in which a polymer binder is used in the coagulation bath, these dispersions can be converted into fibers simply by altering the nature of the coagulation bath via pH control, use of a crosslinking agent, or use of a biomolecule-precipitating solvent system. With strength comparable to most reported CNT fibers to date, these CNT biofibers demonstrate superior electrical conductivities. Cell culture experiments are performed to investigate the cytotoxicity of these fibers. This novel fiber spinning approach could simplify methodologies for creating electrically conducting and biocompatible platforms for a variety of biomedical applications, particularly in those systems where the application of an electrical field is advantageous?for example, in directed nerve and/or muscle repair.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce soft self-assembly of ultralarge liquid crystalline (LC) graphene oxide (GO) sheets in a wide range of organic solvents overcoming the practical limitations imposed on LC GO processing in water. This expands the number of known solvents which can support amphiphilic self-assembly to ethanol, acetone, tetrahydrofuran, N-dimethylformamide, N-cyclohexyl-2-pyrrolidone, and a number of other organic solvents, many of which were not known to afford solvophobic self-assembly prior to this report. The LC behavior of the as-prepared GO sheets in organic solvents has enabled us to disperse and organize substantial amounts of aggregate-free single-walled carbon nanotubes (SWNTs, up to 10 wt %) without compromise in LC properties. The as-prepared LC GO-SWNT dispersions were employed to achieve self-assembled layer-by-layer multifunctional 3D hybrid architectures comprising SWNTs and GO with unrivalled superior mechanical properties (Young’s modulus in excess of 50 GPa and tensile strength of more than 500 MPa).