134 resultados para fuzzy neural networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Speaker recognition is the process of automatically recognizing the speaker by analyzing individual information contained in the speech waves. In this paper, we discuss the development of an intelligent system for text-dependent speaker recognition. The system comprises two main modules, a wavelet-based signal-processing module for feature extraction of speech waves, and an artificial-neural-network-based classifier module to identify and categorize the speakers. Wavelet is used in de-noising and in compressing the speech signals. The wavelet family that we used is the Daubechies Wavelets. After extracting the necessary features from the speech waves, the features were then fed to a neural-network-based classifier to identify the speakers. We have implemented the Fuzzy ARTMAP (FAM) network in the classifier module to categorize the de-noised and compressed signals. The proposed intelligent learning system has been applied to a case study of text-dependent speaker recognition problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy may drop due to presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. This paper proposes the application of Interval Type-2 Fuzzy Logic Systems (IT2 FLSs) for the problem of STLF. IT2 FLSs, with extra degrees of freedom, are an excellent tool for handling prevailing uncertainties and improving the prediction accuracy. Experiments conducted with real datasets show that IT2 FLS models appropriately approximate future load demands with an acceptable accuracy. Furthermore, they demonstrate an encouraging degree of accuracy superior to feedforward neural networks used in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate short term load forecasting (STLF) is essential for a variety of decision-making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. This paper proposes the application of Interval Type-2 Fuzzy Logic Systems (IT2 FLSs) for the problem of STLF. IT2 FLSs, with additional degrees of freedom, are an excellent tool for handling uncertainties and improving the prediction accuracy. Experiments conducted with real datasets show that IT2 FLS models precisely approximate future load demands with an acceptable accuracy. Furthermore, they demonstrate an encouraging degree of accuracy superior to feedforward neural networks and traditional type-1 Takagi-Sugeno-Kang (TSK) FLSs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a neural network (NN)-based multi-agent classifier system (MACS) utilising the trust-negotiation-communication (TNC) reasoning model is proposed. A novel trust measurement method, based on the combination of Bayesian belief functions, is incorporated into the TNC model. The Fuzzy Min-Max (FMM) NN is used as learning agents in the MACS, and useful modifications of FMM are proposed so that it can be adopted for trust measurement. Besides, an auctioning procedure, based on the sealed bid method, is applied for the negotiation phase of the TNC model. Two benchmark data sets are used to evaluate the effectiveness of the proposed MACS. The results obtained compare favourably with those from a number of machine learning methods. The applicability of the proposed MACS to two industrial sensor data fusion and classification tasks is also demonstrated, with the implications analysed and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial neural networks have a good potential to be employed for fault diagnosis and condition monitoring problems in complex processes. In this paper, the applicability of the fuzzy ARTMAP (FAM) neural network as an intelligent learning system for fault detection and diagnosis in a power generation plant is described. The process under scrutiny is the circulating water (CW) system, with specific attention to the conditions of heat transfer and tube blockage in the CW system. A series of experiments has been conducted systematically to investigate the effectiveness of FAM in fault detection and diagnosis tasks. In addition, a set of domain rules has been extracted from the trained FAM network so that its predictions can be explained and justified. The outcomes demonstrate the benefits of employing FAM as an intelligent fault detection and diagnosis tool with an explanatory capability for monitoring and diagnosing complex processes in power generation plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a study of the effectiveness of a multiple classifier system (MCS) in a medical diagnostic task is described. A hybrid network, based on the integration of a fuzzy ARTMAP and the probabilistic neural network, is employed as the basis of the MCS. Outputs from multiple networks are combined using some decision combination method to reach a final prediction. By using a real medical database, a set of experiments has been conducted to evaluate the performance of the MSC with different network configurations. The experimental results reveal the potential of the MCS as a useful decision support tool in the medical field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces an automated medical data classification method using wavelet transformation (WT) and interval type-2 fuzzy logic system (IT2FLS). Wavelet coefficients, which serve as inputs to the IT2FLS, are a compact form of original data but they exhibits highly discriminative features. The integration between WT and IT2FLS aims to cope with both high-dimensional data challenge and uncertainty. IT2FLS utilizes a hybrid learning process comprising unsupervised structure learning by the fuzzy c-means (FCM) clustering and supervised parameter tuning by genetic algorithm. This learning process is computationally expensive, especially when employed with high-dimensional data. The application of WT therefore reduces computational burden and enhances performance of IT2FLS. Experiments are implemented with two frequently used medical datasets from the UCI Repository for machine learning: the Wisconsin breast cancer and Cleveland heart disease. A number of important metrics are computed to measure the performance of the classification. They consist of accuracy, sensitivity, specificity and area under the receiver operating characteristic curve. Results demonstrate a significant dominance of the wavelet-IT2FLS approach compared to other machine learning methods including probabilistic neural network, support vector machine, fuzzy ARTMAP, and adaptive neuro-fuzzy inference system. The proposed approach is thus useful as a decision support system for clinicians and practitioners in the medical practice. copy; 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper makes use of the idea of prediction intervals (PIs) to capture the uncertainty associated with wind power generation in power systems. Since the forecasting errors cannot be appropriately modeled using distribution probability functions, here we employ a powerful nonparametric approach called lower upper bound estimation (LUBE) method to construct the PIs. The proposed LUBE method uses a new framework based on a combination of PIs to overcome the performance instability of neural networks (NNs) used in the LUBE method. Also, a new fuzzy-based cost function is proposed with the purpose of having more freedom and flexibility in adjusting NN parameters used for construction of PIs. In comparison with the other cost functions in the literature, this new formulation allows the decision-makers to apply their preferences for satisfying the PI coverage probability and PI normalized average width individually. As the optimization tool, bat algorithm with a new modification is introduced to solve the problem. The feasibility and satisfying performance of the proposed method are examined using datasets taken from different wind farms in Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel design of interval type-2 fuzzy logic systems (IT2FLS) by utilizing the theory of extreme learning machine (ELM) for electricity load demand forecasting. ELM has become a popular learning algorithm for single hidden layer feed-forward neural networks (SLFN). From the functional equivalence between the SLFN and fuzzy inference system, a hybrid of fuzzy-ELM has gained attention of the researchers. This paper extends the concept of fuzzy-ELM to an IT2FLS based on ELM (IT2FELM). In the proposed design the antecedent membership function parameters of the IT2FLS are generated randomly, whereas the consequent part parameters are determined analytically by the Moore-Penrose pseudo inverse. The ELM strategy ensures fast learning of the IT2FLS as well as optimality of the parameters. Effectiveness of the proposed design of IT2FLS is demonstrated with the application of forecasting nonlinear and chaotic data sets. Nonlinear data of electricity load from the Australian National Electricity Market for the Victoria region and from the Ontario Electricity Market are considered here. The proposed model is also applied to forecast Mackey-glass chaotic time series data. Comparative analysis of the proposed model is conducted with some traditional models such as neural networks (NN) and adaptive neuro fuzzy inference system (ANFIS). In order to verify the structure of the proposed design of IT2FLS an alternate design of IT2FLS based on Kalman filter (KF) is also utilized for the comparison purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extreme learning machine (ELM) is originally proposed for single- hidden layer feed-forward neural networks (SLFN). From the functional equivalence of fuzzy logic systems and SLFN, the fuzzy logic systems can be interpreted as a special case of SLFN under some mild conditions. Hence the fuzzy logic systems can be trained using SLFN's learning algorithms. Considering the same equivalence, ELM is utilized here to train interval type-2 fuzzy logic systems (IT2FLSs). Based on the working principle of the ELM, the parameters of the antecedent of IT2FLSs are randomly generated while the consequent part of IT2FLSs is optimized using Moore-Penrose generalized inverse of ELM. Application of the developed model to electricity load forecasting is another novelty of the research work. Experimental results shows better forecasting performance of the proposed model over the two frequently used forecasting models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce Neural Choice by Elimination, a new framework that integrates deep neural networks into probabilistic sequential choice models for learning to rank. Given a set of items to chose from, the elimination strategy starts with the whole item set and iteratively eliminates the least worthy item in the remaining subset. We prove that the choice by elimination is equivalent to marginalizing out the random Gompertz latent utilities. Coupled with the choice model is the recently introduced Neural Highway Networks for approximating arbitrarily complex rank functions. We evaluate the proposed framework on a large-scale public dataset with over 425K items, drawn from the Yahoo! learning to rank challenge. It is demonstrated that the proposed method is competitive against state-of-the-art learning to rank methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For a given fiber spun to pre-determined yarn specifications, the spinning performance of the yarn usually varies from mill to mill. For this reason, it is necessary to develop an empirical model that can encompass all known processing variables that exist in different spinning mills, and then generalize this information and be able to accurately predict yarn quality for an individual mill. This paper reports a method for predicting worsted spinning performance with an artificial neural network (ANN) trained with backpropagation. The applicability of artificial neural networks for predicting spinning performance is first evaluated against a well established prediction and benchmarking tool (Sirolan YarnspecTM). The ANN is then subsequently trained with commercial mill data to assess the feasibility of the method as a mill-specific performance prediction tool. Incorporating mill-specific data results in an improved fit to the commercial mill data set, suggesting that the proposed method has the ability to predict the spinning performance of a specific mill accurately.