145 resultados para cloud computing fattibilità


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fog Computing is a paradigm that extends Cloud computing and services to the edge of the network. Similar to Cloud, Fog provides data, compute, storage, and application services to end-users. In this article, we elaborate the motivation and advantages of Fog computing, and analyse its applications in a series of real scenarios, such as Smart Grid, smart traffic lights in vehicular networks and software defined networks. We discuss the state-of-the-art of Fog computing and similar work under the same umbrella. Security and privacy issues are further disclosed according to current Fog computing paradigm. As an example, we study a typical attack, man-in-the-middle attack, for the discussion of security in Fog computing. We investigate the stealthy features of this attack by examining its CPU and memory consumption on Fog device.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cloud computing is proposed as an open and promising computing paradigm where customers can deploy and utilize IT services in a pay-as-you-go fashion while saving huge capital investment in their own IT infrastructure. Due to the openness and virtualization, various malicious service providers may exist in these cloud environments, and some of them may record service data from a customer and then collectively deduce the customer's private information without permission. Therefore, from the perspective of cloud customers, it is essential to take certain technical actions to protect their privacy at client side. Noise obfuscation is an effective approach in this regard by utilizing noise data. For instance, noise service requests can be generated and injected into real customer service requests so that malicious service providers would not be able to distinguish which requests are real ones if these requests' occurrence probabilities are about the same, and consequently related customer privacy can be protected. Currently, existing representative noise generation strategies have not considered possible fluctuations of occurrence probabilities. In this case, the probability fluctuation could not be concealed by existing noise generation strategies, and it is a serious risk for the customer's privacy. To address this probability fluctuation privacy risk, we systematically develop a novel time-series pattern based noise generation strategy for privacy protection on cloud. First, we analyze this privacy risk and present a novel cluster based algorithm to generate time intervals dynamically. Then, based on these time intervals, we investigate corresponding probability fluctuations and propose a novel time-series pattern based forecasting algorithm. Lastly, based on the forecasting algorithm, our novel noise generation strategy can be presented to withstand the probability fluctuation privacy risk. The simulation evaluation demonstrates that our strategy can significantly improve the effectiveness of such cloud privacy protection to withstand the probability fluctuation privacy risk.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mobile cloud computing can effectively address the resource limitations of mobile devices, and is therefore essential to enable extensive resource consuming mobile computing and communication applications. Of all the mobile cloud computing applications, data outsourcing, such as iCloud, is fundamental, which outsources a mobile user's data to external cloud servers and accordingly provides a scalable and always on approach for public data access. With the security and privacy issues related to outsourced data becoming a rising concern, encryption on outsourced data is often necessary. Although encryption increases the quality of protection (QoP) of data outsourcing, it significantly reduces data usability and thus harms the mobile user's quality of experience (QoE). How to strike a balance between QoP and QoE is therefore an important yet challenging task. In this article we focus on the fundamental problem of QoP and QoE provisioning in searchable encryption of data outsourcing. We develop a fine-grained data search scheme and discuss its implementation on encrypted mobile cloud data, which is an effective balance between QoE and QoP in mobile cloud data outsourcing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Using cloud computing, individuals can store their data on remote servers and allow data access to public users through the cloud servers. As the outsourced data are likely to contain sensitive privacy information, they are typically encrypted before uploaded to the cloud. This, however, significantly limits the usability of outsourced data due to the difficulty of searching over the encrypted data. In this paper, we address this issue by developing the fine-grained multi-keyword search schemes over encrypted cloud data. Our original contributions are three-fold. First, we introduce the relevance scores and preference factors upon keywords which enable the precise keyword search and personalized user experience. Second, we develop a practical and very efficient multi-keyword search scheme. The proposed scheme can support complicated logic search the mixed “AND”, “OR” and “NO” operations of keywords. Third, we further employ the classified sub-dictionaries technique to achieve better efficiency on index building, trapdoor generating and query. Lastly, we analyze the security of the proposed schemes in terms of confidentiality of documents, privacy protection of index and trapdoor, and unlinkability of trapdoor. Through extensive experiments using the real-world dataset, we validate the performance of the proposed schemes. Both the security analysis and experimental results demonstrate that the proposed schemes can achieve the same security level comparing to the existing ones and better performance in terms of functionality, query complexity and efficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In mobile cloud computing, a fundamental application is to outsource the mobile data to external cloud servers for scalable data storage. The outsourced data, however, need to be encrypted due to the privacy and confidentiality concerns of their owner. This results in the distinguished difficulties on the accurate search over the encrypted mobile cloud data. To tackle this issue, in this paper, we develop the searchable encryption for multi-keyword ranked search over the storage data. Specifically, by considering the large number of outsourced documents (data) in the cloud, we utilize the relevance score and k-nearest neighbor techniques to develop an efficient multi-keyword search scheme that can return the ranked search results based on the accuracy. Within this framework, we leverage an efficient index to further improve the search efficiency, and adopt the blind storage system to conceal access pattern of the search user. Security analysis demonstrates that our scheme can achieve confidentiality of documents and index, trapdoor privacy, trapdoor unlinkability, and concealing access pattern of the search user. Finally, using extensive simulations, we show that our proposal can achieve much improved efficiency in terms of search functionality and search time compared with the existing proposals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the primary issues associated with the efficient and effective utilization of distributed computing is resource management and scheduling. As distributed computing resource failure is a common occurrence, the issue of deploying support for integrated scheduling and fault-tolerant approaches becomes paramount importance. To this end, we propose a fault-tolerant dynamic scheduling policy that loosely couples dynamic job scheduling with job replication scheme such that jobs are efficiently and reliably executed. The novelty of the proposed algorithm is that it uses passive replication approach under high system load and active replication approach under low system loads. The switch between these two replication methods is also done dynamically and transparently. Performance evaluation of the proposed fault-tolerant scheduler and a comparison with similar fault-tolerant scheduling policy is presented and shown that the proposed policy performs better than the existing approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The expected pervasive use of mobile cloud computing and the growing number of Internet data centers have brought forth many concerns, such as, energy costs and energy saving management of both data centers and mobile connections. Therefore, the need for adaptive and distributed resource allocation schedulers for minimizing the communication-plus-computing energy consumption has become increasingly important. In this paper, we propose and test an efficient dynamic resource provisioning scheduler that jointly minimizes computation and communication energy consumption, while guaranteeing user Quality of Service (QoS) constraints. We evaluate the performance of the proposed dynamic resource provisioning algorithm with respect to the execution time, goodput and bandwidth usage and compare the performance of the proposed scheduler against the exiting approaches. The attained experimental results show that the proposed dynamic resource provisioning algorithm achieves much higher energy-saving than the traditional schemes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Temporal violations often take place during the running of large batch of parallel business cloud workflow, which have a serious impact on the on-time completion of massive concurrent user requests. Existing studies have shown that local temporal violations (namely the delays of workflow activities) occurring during cloud workflow execution are the fundamental causes for failed on-time completion. Therefore, accurate prediction of temporal violations is a very important yet challenging task for business cloud workflows. In this paper, based on an epidemic model, a novel temporal violation prediction strategy is proposed to estimate the number of local temporal violations and the number of violations that must be handled so as to achieve a certain on-time completion rate before the execution of workflows. The prediction result can be served as an important reference for temporal violation prevention and handling strategies such as static resource reservation and dynamic provision. Specifically, we first analyze the queuing process of the parallel workflow activities, then we predict the number of potential temporal violations based on a novel temporal violation transmission model inspired by an epidemic model. Comprehensive experimental results demonstrate that our strategy can achieve very high prediction accuracy under different situations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to the increasing energy consumption in cloud data centers, energy saving has become a vital objective in designing the underlying cloud infrastructures. A precise energy consumption model is the foundation of many energy-saving strategies. This paper focuses on exploring the energy consumption of virtual machines running various CPU-intensive activities in the cloud server using two types of models: traditional time-series models, such as ARMA and ES, and time-series segmentation models, such as sliding windows model and bottom-up model. We have built a cloud environment using OpenStack, and conducted extensive experiments to analyze and compare the prediction accuracy of these strategies. The results indicate that the performance of ES model is better than the ARMA model in predicting the energy consumption of known activities. When predicting the energy consumption of unknown activities, sliding windows segmentation model and bottom-up segmentation model can all have satisfactory performance but the former is slightly better than the later.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cloud computing is establishing itself as the latest computing paradigm in recent years. As doing science in the cloud is becoming a reality, scientists are now able to access public cloud centers and employ high-performance computing resources to run scientific applications. However, due to the dynamic nature of the cloud environment, the usability of scientific cloud workflow systems can be significantly deteriorated if without effective service quality assurance strategies. Specifically, workflow temporal verification as the major approach for workflow temporal QoS (Quality of Service) assurance plays a critical role in the on-time completion of large-scale scientific workflows. Great efforts have been dedicated to the area of workflow temporal verification in recent years and it is high time that we should define the key research issues for scientific cloud workflows in order to keep our research on the right track. In this paper, we systematically investigate this problem and present four key research issues based on the introduction of a generic temporal verification framework. Meanwhile, state-of-the-art solutions for each research issue and open challenges are also presented. Finally, SwinDeW-V, an ongoing research project on temporal verification as part of our SwinDeW-C cloud workflow system, is also demonstrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Massive computation power and storage capacity of cloud computing systems enable users to either store large generated scientific datasets in the cloud or delete and then regenerate them whenever reused. Due to the pay-as-you-go model, the more datasets we store, the more storage cost we need to pay, alternatively, we can delete some generated datasets to save the storage cost but more computation cost is incurred for regeneration whenever the datasets are reused. Hence, there should exist a trade-off between computation and storage in the cloud, where different storage strategies lead to different total costs. The minimum cost, which reflects the best trade-off, is an important benchmark for evaluating the cost-effectiveness of different storage strategies. However, the current benchmarking approach is neither efficient nor practical to be applied on the fly at runtime. In this paper, we propose a novel Partitioned Solution Space based approach with efficient algorithms for dynamic yet practical on-the-fly minimum cost benchmarking of storing generated datasets in the cloud. In this approach, we pre-calculate all the possible minimum cost storage strategies and save them in different partitioned solution spaces. The minimum cost storage strategy represents the minimum cost benchmark, and whenever the datasets storage cost changes at runtime in the cloud (e.g. new datasets are generated and/or existing datasets' usage frequencies are changed), our algorithms can efficiently retrieve the current minimum cost storage strategy from the partitioned solution space and update the benchmark. By dynamically keeping the benchmark updated, our approach can be practically utilised on the fly at runtime in the cloud, based on which the minimum cost benchmark can be either proactively reported or instantly responded upon request. Case studies and experimental results based on Amazon cloud show the efficiency, scalability and practicality of our approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In cloud environments, IT solutions are delivered to users via shared infrastructure, enabling cloud service providers to deploy applications as services according to user QoS (Quality of Service) requirements. One consequence of this cloud model is the huge amount of energy consumption and significant carbon footprints caused by large cloud infrastructures. A key and common objective of cloud service providers is thus to develop cloud application deployment and management solutions with minimum energy consumption while guaranteeing performance and other QoS specified in Service Level Agreements (SLAs). However, finding the best deployment configuration that maximises energy efficiency while guaranteeing system performance is an extremely challenging task, which requires the evaluation of system performance and energy consumption under various workloads and deployment configurations. In order to simplify this process we have developed Stress Cloud, an automatic performance and energy consumption analysis tool for cloud applications in real-world cloud environments. Stress Cloud supports the modelling of realistic cloud application workloads, the automatic generation of load tests, and the profiling of system performance and energy consumption. We demonstrate the utility of Stress Cloud by analysing the performance and energy consumption of a cloud application under a broad range of different deployment configurations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A fundamental premise in cloud computing is trying to provide a more sophisticated computing resource sharing capability. In order to provide better allocation, the Dominant Resource Fairness (DRF) approach has been developed to address the "fair resource allocation problem" at the application layer for multi-tenant cloud applications. Nevertheless conventional DRF only considers the interplay of CPU and memory, which may result in over allocation of resources to one tenant's application to the detriment of others. In this paper, we propose an improved DRF algorithm with 3-dimensional demand vector to support disk resources as the third dominant shared resource, enhancing fairer resource sharing. Our technique is integrated with LINUX 'group' controls resource utilisation and realises data isolation to avoid undesirable interactions between co-located tasks. Our method ensures all tenants receive system resources fairly, which improves overall utilisation and throughput as well as reducing traffic in an over-crowded system. We evaluate the performance of different types of workload using different algorithms and compare ours to the default algorithm. Results show an increase of 15% resource utilisation and a reduction of 59% completion time on average, indicating that our DRF algorithm provides a better, smoother, fairer high-performance resource allocation scheme for both continuous workloads and batch jobs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cloud computing as the latest computing paradigm has shown its promising future in business workflow systems facing massive concurrent user requests and complicated computing tasks. With the fast growth of cloud data centers, energy management especially energy monitoring and saving in cloud workflow systems has been attracting increasing attention. It is obvious that the energy for running a cloud workflow instance is mainly dependent on the energy for executing its workflow activities. However, existing energy management strategies mainly monitor the virtual machines instead of the workflow activities running on them, and hence it is difficult to directly monitor and optimize the energy consumption of cloud workflows. To address such an issue, in this paper, we propose an effective energy testing framework for cloud workflow activities. This framework can help to accurately test and analyze the baseline energy of physical and virtual machines in the cloud environment, and then obtain the energy consumption data of cloud workflow activities. Based on these data, we can further produce the energy consumption model and apply energy prediction strategies. Our experiments are conducted in an OpenStack based cloud computing environment. The effectiveness of our framework has been successfully verified through a detailed case study and a set of energy modelling and prediction experiments based on representative time-series models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RFID and Cloud computing are widely used in the IoT (Internet of Things). However, there are few research works which combine RFID ownership transfer schemes with Cloud computing. Subsequently, this paper points out the weaknesses in two protocols proposed by Xie et al. (2013) [3] and Doss et al. (2013) [9]. To solve the security issues of these protocols, we present a provably secure RFID ownership transfer protocol which achieves the security and privacy requirements for cloud-based applications. To be more specific, the communication channels among the tags, mobile readers and the cloud database are insecure. Besides, an encrypted hash table is used in the cloud database. Next, the presented protocol not only meets backward untraceability and the proposed strong forward untraceability, but also resists against replay attacks, tracing attacks, inner reader malicious impersonation attacks, tag impersonation attacks and desynchronization attacks. The comparisons of security and performance properties show that the proposed protocol has more security, higher efficiency and better scalability compared with other schemes.