279 resultados para chloride corrosion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mixed rare-earth organophosphates have been investigated as potential corrosion inhibitors for AA2024-T3, and previously have shown synergistic inhibition behavior; however, the mechanism was not identified. In this paper, a key factor contributing to corrosion inhibition of AA2024-T3 with mischmetal diphenyl phosphate [Mm(dpp)3] is the unique stability of Pr(dpp)3 compared to other key rare earths in mischmetal. Although increasing pH causes precipitation of other components, the Pr compound is stable at higher pH. Electrochemically, a synergy is evident when Ce(dpp)3 and Pr(dpp)3 are combined. Raman mapping indicates the Pr(dpp)3 inhibitor leads to a more uniform coverage of the alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium alloy ZE41, used extensively in the aerospace industry, possesses excellent mechanical properties albeit poor corrosion resistance. This paper investigates the mechanism of corrosion and the interaction between the grain boundary intermetallic phases, the Zr-rich regions within the grains and the bulk Mg-rich matrix. The results of optical and scanning electron microscopy (SEM) together with energy-dispersive X-ray (EDX) and atomic force microscopy (AFM) potential map measurements have shown the importance of the microstructure in the initiation and propagation of corrosion in an aqueous environment, indicating that the Zr-rich regions play a distinct role in the early stages of corrosion in this alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphonium cation based ionic liquids (ILs) have become of interest due to their unique chemical and electrochemical stability as well as their promising tribological properties. At the same time, interest has also grown in the use of phosphate and phosphinate based ionic liquids for corrosion protection of reactive metals. In this work we describe the synthesis and characterization of six novel ionic liquids based on the tetraalkylphosponium cation coupled with organophosphate and organophosphinate anions and their sulfur analogues. The conductivity and viscosity of these ILs has been measured and discussed in terms of the nature of the interactions, effect of anion basicity and the extent of ionic character. The reaction of the IL with a ZE41 magnesium aerospace alloy surface is also demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate calcium chloride coagulation technology, two kinds of raw natural rubber samples were produced by calcium chloride and acetic acid respectively. Plasticity retention index (PRI), thermal degradation process, thermal degradation kinetics and differential thermal analysis of two samples studied. Furthermore, thermal degradation activation energy, pre-exponential factor and rate constant were calculated. The results show that natural rubber produced by calcium chloride possesses good mechanical property and poor thermo-stability in comparison to natural rubber produced by acetic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generation of potentially corrosion-resistant films on light metal alloys of magnesium have been investigated. Magnesium alloy, ZE41 [Mg−Zn−Rare Earth (RE)-Zr, nominal composition 4 wt % Zn, 1.7 wt % RE (Ce), 0.6 wt % Zr, remaining balance, Mg], was exposed under potentiostatic control to the ionic liquid trihexyl(tetradecyl)phosphonium diphenylphosphate, denoted [P6,6,6,14][DPP]. During exposure to this IL, a bias potential, shifted from open circuit, was applied to the ZE41 surface. Electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) were used to monitor the evolution of film formation on the metal surface during exposure. The EIS data indicate that, of the four bias potentials examined, applying a potential of −200 mV versus OCP during the exposure period resulted in surface films of greatest resistance. Both EIS measurements and scanning electron microscopy (SEM) imaging indicate that these surfaces are substantially different to those formed without potential bias. Time of flight-secondary ion mass spectrometry (ToF-SIMS) elemental mapping of the films was utilized to ascertain the distribution of the ionic liquid cationic and anionic species relative to the microstructural surface features of ZE41 and indicated a more uniform distribution compared with the surface following exposure in the absence of a bias potential. Immersion of the treated ZE41 specimens in a chloride contaminated salt solution clearly indicated that the ionic liquid generated surface films offered significant protection against pitting corrosion, although the intermetallics were still insufficiently protected by the IL and hence favored intergranular corrosion processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of materials with otherwise desirable mechanical properties is often problematic in practice as a result of corrosion. Susceptibility may arise for a number of reasons, including an electrochemically heterogeneous surface or destabilisation of a passive film. These shortcomings have historically been overcome through the use of various coatings or claddings. However, a more robust surface layer with enhanced corrosion resistance could possibly be produced via local surface alloying using a fluidised bed. A fluidised bed treatment allows a surface to be alloyed, producing a distinct surface layer up to tens of microns thick. Surface alloying additions can be selected on the basis of whether they are known or suspected to enhance the corrosion resistance of a particular material, whilst at a minimum, surface alloying likely provides a more electrochemically homogeneous surface. Electrochemical evaluations using potentiodynamic polarisations in NaCl electrolytes have shown chromised plain carbon and stainless steel surfaces have decreased rates of corrosion, decreased passive current densities, and ennobled pitting potentials relative to untreated specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface-enhanced infrared absorption (SEIRA) spectra of manganese (III) tetraphenylporphine chloride (Mn(TPP)Cl) on metal island films were measured in transmission mode. Dependences of the enhancement factor of SEIRA on both the sample quantity and the type of evaporated metal were investigated by subsequently increasing the amount of Mn(TPP)Cl on gold and silver substrates. The enhancement increases nonlinearly with the amount of sample and varies slightly with the thickness of metal islands. In particular, the SEIRA transmission method presents an anomalous spectral enhancement by a factor of 579, with substantial spectral shifts, observed only for the physisorbed Mn(TPP)Cl that remained on a 3-nm-thick gold film after immersion of the substrates into acetone. A charge-transfer (CT) interaction between the porphyrinic Mn and gold islands is therefore proposed as an additional factor in the SEIRA mechanism of the porphyrin system. The number of remaining porphyrin molecules was estimated by calibration-based fluorescence spectroscopy to be 2.36×1013 molecules (i.e., ~2.910-11 mol/cm2) for a 3-nm-thick gold film, suggesting that the physisorbed molecules distributed very loosely on the metal island surface as a result of the weak van der Waals interactions. Fluorescence microscopy revealed the formation of microcrystalline porphyrin aggregates during the consecutive increase in sample solution. However, the immersion likely redistributed the porphyrin to be directly attached on the gold surface, as evidenced by an absence of porphyrinic microcrystals and the observed SEIRA enhancement. The distinctive red shift in the UV-visible spectra and the SEIRA-enhanced peaks indicate the presence of a preferred orientation in the form of the porphyrin ring inclined with respect to the gold surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiotensin (Ang) I-converting enzyme (ACE) is a Zn2+ metalloprotease with two homologous catalytic domains. Both the N- and C-terminal domains are peptidyl dipeptidases. Hydrolysis by ACE of its decapeptide substrate Ang I is increased by Cl−, but the molecular mechanism of this regulation is unclear. A search for single substitutions to Gln among all conserved basic residues (Lys/Arg) in human ACE C-domain identified R1098Q as the sole mutant that lacked Cl− dependence. Cl−dependence is also lost when the equivalent Arg in the N-domain, Arg500, is substituted with Gln. The Arg1098 to Lys substitution reduced Cl− binding affinity by ∼100-fold. In the absence of Cl−, substrate binding affinity (1/K m) of and catalytic efficiency (k cat/K m) for Ang I hydrolysis are increased 6.9- and 32-fold, respectively, by the Arg1098 to Gln substitution, and are similar (<2-fold difference) to the respective wild-type C-domain catalytic constants in the presence of optimal [Cl−]. The Arg1098 to Gln substitution also eliminates Cl− dependence for hydrolysis of tetrapeptide substrates, but activity toward these substrates is similar to that of the wild-type C-domain in the absence of Cl−. These findings indicate that: 1) Arg1098 is a critical residue of the C-domain Cl−-binding site and 2) a basic side chain is necessary for Cl− dependence. For tetrapeptide substrates, the inability of R1098Q to recreate the high affinity state generated by the Cl−-C-domain interaction suggests that substrate interactions with the enzyme-bound Cl− are much more important for the hydrolysis of short substrates than for Ang I. Since Cl− concentrations are saturating under physiological conditions and Arg1098 is not critical for Ang I hydrolysis, we speculate that the evolutionary pressure for the maintenance of the Cl−-binding site is its ability to allow cleavage of short cognate peptide substrates at high catalytic efficiencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At present water treatment and distribution is of high priority to ensure that communities have access to safe and affordable drinking water. Current information states that in the United States a total annual cost of $36 billion (US) is spent replacing aging infrastructure, lost water from unaccounted-for leaks, corrosion inhibitors, internal mortar linings, external coatings, and cathodic protection as a result of corrosion. In order to reduce the cost incurred as a result of corrosion in the water distribution industry, it is essential that better corrosion management and preventative strategies are implemented. However through investigation of research previously undertaken by others, it was found that there was a lack of study of corrosion within distribution systems in the tropics taking into account the related seasonal temperature variations. To assist in the development of management strategies to improve the outcomes of drinking water distribution systems, the authors propose to implement a pilot study involving the installation of a corrosion reactor based on standard corrosion assessment technologies in a water distribution system located in the tropics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the reactive dyeing of cotton, salts such as sodium chloride (NaCI) are placed in a dyebath to aid the exhaustion of various dyes onto the fabric while bases are added to raise the pH from around neutral to pH 11 to achieve fixation. Afterwards, the used dyebath solution, called dyebath spent liquor, is discharged with almost all the salts and bases added as well as unfixed dyes. Consequently, many raw materials are lost in the waste stream ending up in the environment as pollutants. In this study possibilities of reusing the water and salts of dyebaths were investigated using a nanofiltration membrane. When the NaCI concentration in the spent liquor was increased from 10 to 80 g/L, the NaC1 rejection by the membrane was found to decrease initially; however, the NaC1 rejection increased over time, which was not expected. The aggregation of dye was also studied and found to decrease in the concentrate when the salt concentration was increased. This information is useful for the textile industry in evaluating the treated water quality for the purpose of reuse.