105 resultados para boron nitride (BN) nanodisks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin-polarized density functional calculations reveal that magnetism can be induced by carbon adatoms on boron nitride nanotubes (BNNTs) and BN hexagonal sheets. As a result of the localization of impurity states, these hybrid sp-electron systems are spin-polarized, with a local magnetic moment of 2.0 μB per C adatom regardless of the tube diameter and the bonding between the C atom and the BNNTs/BN sheets. An analysis of orbital hybridization indicates that two valence electrons participate in the bonding and the remaining two electrons of the C adatom are confined at the adsorption site and contribute to the magnetism accordingly. The effective interaction distance between the C-induced magnetic moments is evaluated. In terms of the diffusion barrier and the adsorption energy of C adatoms on the BN nanotubes/ sheets, a fabrication method for BN-C-based functional nanodevices is proposed, and a series of virtual building blocks for functional devices are illustrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional (3D) architectures are of interest in applications in electronics, catalysis devices, sensors and adsorption materials. However, it is still a challenge to fabricate 3D BN architectures by a simple method. Here, we report the direct synthesis of 3D BN architectures by a simple thermal treatment process. A 3D BN architecture consists of an interconnected flexible network of nanosheets. The typical nitrogen adsorption/desorption results demonstrate that the specific surface area for the as-prepared samples is up to 1156 m(2) g(-1), and the total pore volume is about 1.17 cm(3) g(-1). The 3D BN architecture displays very high adsorption rates and large capacities for organic dyes in water without any other additives due to its low densities, high resistance to oxidation, good chemical inertness and high surface area. Importantly, 88% of the starting adsorption capacity is maintained after 15 cycles. These results indicate that the 3D BN architecture is potential environmental materials for water purification and treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly porous boron nitride nanosheets (BNNSs) were tested as a re-usable adsorbent for the removal of pharmaceuticals from aqueous solution. The BNNSs exhibit both unprecedentedly high adsorption capacities and excellent recyclability while maintaining their high adsorption capacity by a simple regeneration process. These advantages render BNNSs a promising material for water remediation applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-dimensional (1D) nanomaterials including nanotubes, nanowires and nanorods have many new properties, functionalities and a large range of promising applications. A major challenge for these future industrial applications is the large-quantity production. We report that the ball milling and annealing process has the potential to achieve the mass production. Several examples including C, BN nanotubes and SiC, Zn nanowires are presented to demonstrate such capability. In addition, both size and structure of 1D nanomaterials can be controlled by varying processing conditions. New growth mechanisms involved in the process have been investigated and the high-energy ball milling has an important role in the formation of these 1D nanomaterials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 In this thesis, the application of planetary ball milling for the efficient production of nanomaterials is systematically studied. Three inorganic materials: calcium carbonate (CaCO3), molybdenum disulphide (MoS2) and hexagonal-boron nitride (h-BN) are chosen as model systems.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A process for producing boron nitride nanotubes and nanotube films, which process comprises heating a liquid composition comprising boron particles and a metal compound, wherein heating takes place at a temperature of from 800-1300 DEG C in a gaseous atmosphere containing nitrogen that causes boron nitride nanotubes to grow, and wherein the boron particles have an average particle size of less than 100 nm, and wherein the metal compound is selected such that it promotes the growth of boron nitride nanotubes during heating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biomedical application of graphene quantum dots (GQDs) is a new emerging area. However, their safety data are still in scarcity to date. Particularly, the effect of GQDs on the immune system remains unknown. This study aimed to elucidate the interaction of GQDs with macrophages and the underlying mechanisms. Our results showed that GQDs slightly affected the cell viability and membrane integrity of macrophages, whereas GQDs significantly increased reactive oxygen species (ROS) generation and apoptotic and autophagic cell death with an increase in the expression level of Bax, Bad, caspase 3, caspase 9, beclin 1, and LC3-I/II and a decrease in that of Bcl-2. Furthermore, low concentrations of GQDs significantly increased the expression of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-8, whereas high concentrations of GQDs elicited opposite effects on the cytokines production. SB202190, a selective inhibitor of p38 mitogen-activated protein kinase (MAPK), abolished the cytokine-inducing effect of GQDs in macrophages. Moreover, GQDs significantly increased the phosphorylation of p38 MAPK and p65, and promoted the nuclear translocation of nuclear factor-κB (NF-κB). Taken together, these results show that GQDs induce ROS generation, apoptosis, autophagy, and inflammatory response via p38MAPK and NF-κB mediated signaling pathways in THP-1 activated macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project develops a novel photocatalyst for the cleaning of textile dyeing wastewater. The newly-developed photocatalyst was prepared by combing porous boron nitride nanosheets with titanium dioxide particles and these composites show potentials for the practical treatment of the textile dyeing wastewater in a large scale.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A simple, high yield, chemical process is developed to fabricate layered h-BN nanosheets and BCNO nanoparticles with a diameter of ca. 5 nm at 700 °C. The use of the eutectic LiCl/KCl salt melt medium enhances the kinetics of the reaction between sodium borohydride and urea or guanidine as well as the dispersion of the nanoparticles in water. The carbon content can be tuned from 0 to 50 mol % by adjusting the reactant ratio, thus providing precise control of the light emission of the particles in the range 440–528 nm while reaching a quantum yield of 26%. Because of their green synthesis, low toxicity, small size, and stability against aggregation in water, the as-obtained photoluminescent BCNO nanoparticles show promise for diagnostics and optoelectronics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A study of the synthesis of hexagonal boron carbo-nitride (h-BCN) compounds via a two-step high-temperature and high-pressure (HTHP) technique using melamine (C 3N 6H 6) and boron oxide (B 2O 3) as raw materials is presented. An amorphous BCN precursor was prepared at 1000K under vacuum in a resistance furnace and then single-phase h-BCN nanocrystalline was synthesized at 1600K and 5.1GPa in a multi-anvil apparatus. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the final products were pure h-BCN crystals with the lattice constants a ≤ 0.2510nm and c ≤ 0.6690nm. The average grain size was about 150nm. X-ray photoelectron spectroscopy (XPS) results confirmed the occurrence of bonding between C-C, C-N, C-B and N-B atoms. Raman scattering analysis suggested that there were three strong Raman bands centered at 1359, 1596 and 1617cm -1, respectively. The band at 1617cm -1 was considered to be consistent with the characteristic Raman peak of h-BCN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Boron carbide nanowires with uniform carbon nitride coating layers were synthesized on a silicon substrate using a simple thermal process. The structure and morphology of the as-synthesized nanowires were characterized using x-ray diffraction, scanning and transmission electron microscopy and electron energy loss spectroscopy. A correlation between the surface smoothness of the nanowire sidewalls and their lateral sizes has been observed and it is a consequence of the anisotropic formation of the coating layers. A growth mechanism is also proposed for these growth phenomena.