82 resultados para Thermo-mechanical processing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the work is development of industry guidance concerning production of ultrafine-grained (UFG) High Strength Low Alloy (HSLA) steels using strain-induced dynamic phase transformations during advanced thermomechanical processing. In the first part of the work, the effect of processing parameters on the grain refinement was studied. Based on the obtained results, a multiscale computer model was developed in the second part of the work that was subsequently used to predict the mechanical response of studied structures. As an overall outcome, a process window was established for the production of UFG steels that can be adopted in existing hot rolling mills. © 2014 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Qi developed a novel thermomechanical processing route for the grain refinement of titanium alloys. This leads to a well-balanced superior mechanical property, which is vital for modern air transport. The outcomes of this project are prospective to enhance titanium application and the long-term viability of Australian resources and manufacturing industries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High entropy alloys (HEA) are a relatively new metal alloy system that have promising potential in high temperature applications. These multi-component alloys are typically produced by arc-melting, requiring several remelts to achieve chemical homogeneity. Direct laser fabrication (DLF) is a rapid prototyping technique, which produces complex components from alloy powder by selectively melting micron-sized powder in successive layers. However, studies of the fabrication of complex alloys from simple elemental powder blends are sparse. In this study, DLF was employed to fabricate bulk samples of three alloys based on the AlxCoCrFeNi HEA system, where x was 0.3, 0.6 and 0.85M fraction of Al. This produced FCC, FCC/BCC and BCC crystal structures, respectively. Corresponding alloys were also produced by arc-melting, and all microstructures were characterised and compared longitudinal and transverse to the build/solidification direction by x-ray diffraction, glow discharge optical emission spectroscopy and scanning electron microscopy (EDX and EBSD). Strong similarities were observed between the single phase FCC and BCC alloys produced by both techniques, however the FCC/BCC structures differed significantly. This has been attributed to a difference in the solidification rate and thermal gradient in the melt pool between the two different techniques. Room temperature compression testing showed very similar mechanical behaviour and properties for the two different processing routes. DLF was concluded to be a successful technique to manufacture bulk HEA[U+05F3]s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium alloys are widely used in various engineering design application due to its superior material properties. The traditional manufacturing of titanium products is always difficult, time consuming, high material wastage and manufacturing costs. Selective laser melting (SLM), an additive manufacturing technology has widely gained attention due to its capability to produce near net shape components with less production time. In this technical paper,microstructure,chemical composition,tensile properties and hardness are studied for the wrought and additive manufactured SLM cylindrical bar. Microstructure,mechanical properties and hardness were studied in both the longitudinal and transverse directions of the bar to study the effect of orientation. It was found that additive manufactured bar have higher yield strength, ultimate tensile strength and hardness than the wrought bar. For both conventional and SLM test samples, the yield strength, ultimate tensile strength and hardness was found to be high in the transverse direction. The difference in the properties can be attributed to the difference in microstructure as a result of processing conditions. The tensile fracture area was quantified by careful examination of the fracture surfaces in the scanning electron microscope.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper focuses on the influence of processing temperature and inclusion of micron-sized B4C, TiB2 and ZrSiO4 on the mechanical performance of aluminium matrix composites fabricated through stir casting. The ceramic/aluminium composite could withstand greater external loads, due to interfacial ceramic/aluminium bonding effect on the movement of grain and twin boundaries. Based on experimental results, the tensile strength and hardness of ceramic reinforced composite are significantly increased. The maximum improvement is achieved through adding ZrSiO4 and TiB2, which has led to 52% and 125% increase in tensile strength and hardness, respectively. To predict the effect of incorporating ceramic reinforcements on the mechanical properties of composites, experimental data of mechanical tests are used to create 3 models named Levenberg-Marquardt Algorithm (LMA) neural networks. The results show that the LMA- neural networks models have a high level of accuracy in the prediction of mechanical properties for ceramic reinforced-aluminium matrix composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polypropylene (PP) and polystyrene (PS) blends were prepared by melt processing in a haake at 180 °C. PP/PS blends are immiscible and the blend morphologies were characterized by scanning electron microscopy. The viscoelastic properties were characterized using dynamic mechanical analysis (DMA) with reference to blend ratio. The blend morphologies such as matrix droplet and phase inverted morphologies were observed. The storage modulus of the blends increased with increase in PS content and the value was maximum for neat PS. DMA showed changes in the polystyrene glass transition temperatures (Tg) over the entire composition range. There was a sharp increase in the Tg of PS with increasing PP content in the blend and a 12 °C elevation in Tg was observed. The increase in Tg was explained by proposing a new model based on the physical interaction between the blend components. It is assumed that the different effects by the PP phase resulted in the formation of constrained PS chains leading to high Tg values. The addition of PP-g-MAH has a positive effect on the morphology, increases the storage modulus, and decreases the Tg till 80/20 blends. However, for PP/PS blends with higher concentrations of PS, the PP-g-MAH has little effect or adverse effect on the morphology, and storage modulus, but decreases the Tg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nano-modified matrix based on an epoxy resin and montmorillonite (MMT) layered silicates, was successfully infiltrated through 10 ply of carbon fibre preform. A combined fabrication process of a vacuum assisted resin infusion method (VARIM) followed by a rapid heating rate and mechanical vibration during cure, facilitated the infiltration of the nano-modified matrix through the preform. This was achieved by dispersing the MMT clay in the resin and ensuring that the viscosity of the nano-modified matrix remained low during fabrication. SEM-EDX (energy dispersive X-ray spectroscopy) spectra showed that chemical constituents within MMT clay including silicon, aluminium and magnesium elements had permeated through the fibre preform and were detected throughout the laminate. A homogeneous resin/particle distribution was achieved with the size of clay particles ranging from 100 nm to 1 μm.